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Abstract

Multiparty session types (MPST) ensure that distributed systems correctly implement error-free

communication protocols. However, many real-world protocols exhibit probabilistic behaviour,

which MPST cannot capture. To address this, we propose the first probabilistic extension to

bottom-up MPST and implement a verification procedure using the PRISM model checker. We

define a translation from types into PRISM and prove its soundness and completeness with re-

spect to their operational semantics. Moreover, we evaluate the practicality of our implementa-

tion through case studies and measuring its performance across a diverse set of examples.
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Chapter 1

Introduction

Distributed systems are everywhere. They underpin technologies we rely on daily, ranging from

online communication to financial services. As these systems grow in complexity and scale,

ensuring reliable and correct communication becomes increasingly critical.

A prominent approach to verifying such systems is through session types [Honda et al., 1998],

a typing discipline for specifying communication protocols between two message-passing con-

current processes. Multiparty session types (MPST) [Honda et al., 2008] extend this to proto-

cols involving multiple participants. The original top-down MPST framework guarantees dead-

lock freedom, while the newer bottom-up framework [Scalas and Yoshida, 2019] generalises it

to support broader properties. MPST is now a prominent method for formalising and verify-

ing distributed protocols, with implementations in over 16 languages including Rust, Go and

Java [Yoshida, 2024].

However, many real-world distributed protocols are probabilistic in nature. They may utilise

randomised algorithms to improve their efficiency [Aspnes and Herlihy, 1990], or take stochastic

failures into account [Fehnker and Gao, 2006]. The standard MPST framework is insufficient to

capture such probabilistic behaviours.

Several probabilistic extensions to session types have been proposed, but these either target bi-

nary sessions [Inverso et al., 2020, Das et al., 2023] or build off top-down MPST [Aman and

Ciobanu, 2019]. The latter is often too restrictive, as it only types deadlock-free processes – a

condition that may not hold in real-world probabilistic systems. Instead, we aim to explore richer
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CHAPTER 1. INTRODUCTION 4

properties such as the probability of deadlock freedom.

To address this gap, we present the first probabilistic extension to bottom-up MPST. Our main

contributions are as follows.

• We introduce our type system and formally define their properties (Chapter 2).

• We define a translation from types into the PRISM language and prove its correctness

with respect to their operational semantics (Chapter 3). Notably, the recursive nature of

session types precludes many natural inductive proofs; instead, we define new relations

and functions that enable coinductive proofs.

• We present Prose1, a tool implemented in OCaml which verifies probabilistic protocols

using our theoretical contributions (Chapter 4).

• We demonstrate that our approach is both practical and performant through a wide range

of case studies and performance benchmarks (Chapter 5).

1https://github.com/smjleo/prose

https://github.com/smjleo/prose


Chapter 2

A type system

In this chapter, we introduce a type system for probabilistic concurrent message-passing pro-

grams. To do this, we briefly touch on a formal notion of such programs by presenting a process

calculus. Next, we define a type system, capturing a certain abstract communication protocol

that these programs must follow. Finally, we argue that the type system, as presented thus far,

is too weak.

Wemodel concurrent processes using a session calculus closely modelling the multiparty session

𝜋-calculus presented in [Scalas and Yoshida, 2019], but extended with probabilities. A formal

definition of the 𝜋-calculus is beyond the scope of this report; instead, we proceed with a small

example.

2.1 A simple session

Example 2.1.1. Suppose alice and bob are two participants in a distributed system. Their

processes are given by

𝑃alice = bob⊞
⎧{
⎨{⎩

0.4 ∶ inc⟨41⟩.bobΣresult(𝑥).0

0.6 ∶ not⟨true⟩.bobΣresult(𝑥).0

𝑃bob = aliceΣ
⎧{
⎨{⎩

inc(𝑥).alice⊞result⟨𝑥 + 1⟩.0

not(𝑥).alice⊞result⟨¬𝑥⟩.0

5



CHAPTER 2. A TYPE SYSTEM 6

Alice Bob

alt [p=0.4]

inc 41

result 42

[p=0.6]

not true

result false

Figure 2.1: Illustration of Example 2.1.1.

With probability 0.4, alice sends (⊞) incwith payload 41, receives (Σ) a result from bob, binds it

to 𝑥, and terminates (0). With probability 0.6, she sends notwith payload true, receives a result,

and terminates.

Meanwhile, bob awaits either message. If he receives inc, he increments the payload, sends the

result, and terminates. If he receives not, he negates the payload, replies, and terminates.

We can construct a session by assigning these processes to alice and bob and composing them:

ℳalice,bob = alice ◁ 𝑃alice | bob ◁ 𝑃bob

Running ℳalice,bob, alice obtains 𝑥 = 42 with probability 0.4, and 𝑥 = false with probability

0.6.

2.2 Introducing types

The 𝜋-calculus describes how sessions behave; the session type describes how sessions should

behave. At a high level, session types encode communication protocols. Accordingly, they omit

computational details, solely focusing on the messages passed between participants.

Definition 2.2.1. The syntax of probabilistic multiparty session types is given by:

T ∶∶= p&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖 (external choice, with |𝐼 | > 0)

| p⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖 (internal choice, with |𝐼 | > 0, ∑𝑖∈𝐼 𝑝𝑖 = 1 and 𝑝𝑖 ∈ [0, 1]

| 𝜇t.T | t (recursion and recursion variable)
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| end (termination)

B ∶∶= int | bool | unit (basic types)

We assume types are closed (i.e. cannot have any unbound variables), unless otherwise stated.

Types with open variables are called partial types, since they may appear as part of a closed

type.

p&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖 denotes external choice: the process waits to receive from participant p one of the

labels ℓ𝑖 with payload type B𝑖, continuing as T𝑖. The choice of 𝑖 ∈ 𝐼 is made by p, so the process

must be ready for all |𝐼 | options.

p⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖 represents internal choice: the process selects 𝑖 ∈ 𝐼 with probability 𝑝𝑖, sends ℓ𝑖

with payload B𝑖 to p, then continues as T′𝑖 .

𝜇t.Tmodels recursion, binding T to t. For example, 𝜇t.p⊕{1 ∶ ℓ.t} sends ℓ to p forever. Recursion

must be guarded : variables must appear under a choice. Thus, types like 𝜇t.t are invalid.

Finally, end represents a terminated process.

Notation 2.2.1. We often omit the unit type and probability 1: p&ℓ.T means p&{ℓ(unit).T},

and p⊕ℓ.T means p⊕{1 ∶ ℓ⟨unit⟩.T}.

Example 2.2.1. The process 𝑃alice from Example 2.1.1 inhabits

Talice = bob⊕{
0.4 ∶ inc⟨int⟩.bob&result(int).end
0.6 ∶ not⟨bool⟩.bob&result(bool).end.

Similarly, 𝑃bob inhabits

Tbob = alice&{
inc(int).alice⊕result⟨int⟩.end
not(bool).alice⊕result⟨bool⟩.end.

2.3 Typing contexts

We extend the notion of types into typing contexts – mappings from participants to types. This

allows us to reason about the interaction between types.
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[ct-out]
𝑘 ∈ 𝐼 𝑝𝑘 > 0

p ∶ q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖
p∶q!ℓ𝑘⟨B𝑘⟩
−−−−−−−−→𝑝𝑘 p ∶ T𝑘

[ct-in]
𝑘 ∈ 𝐼

p ∶ q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖
p∶q?ℓ𝑘(B𝑘)
−−−−−−−−→1 p ∶ T𝑘

[ct-𝜏]

Δ1
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 Δ′

1 Δ2
q∶p?ℓ(B)
−−−−−−−→1 Δ′

2

Δ1, Δ2
(p,q)ℓ
−−−−→𝑝 Δ′

1, Δ′
2

[ct-rec]

p ∶ T{𝜇t.T/t} 𝛼
−→𝑝 p ∶ T′

p ∶ 𝜇t.T
𝛼
−→𝑝 p ∶ T′

[ct-sc]

Δ
𝛼
−→𝑝 Δ′

p ∶ T, Δ
𝛼
−→𝑝 p ∶ T, Δ′

Figure 2.2: Reduction rules for typing contexts.

Definition 2.3.1. The syntax of typing contexts is given by

Δ ∶∶= ∅ | p ∶ T, Δ

Example 2.3.1. We put Example 2.2.1 into a context:

Δalice,bob = alice ∶ Talice, bob ∶ Tbob

Thus we have a typing judgement ⊢ ℳalice,bob ∶ Δalice,bob.

Typing contexts reduce according to the rules in Figure 2.2. A reduction Δ
(p,q)ℓ
−−−−→𝑝 Δ′ means that

p sends a message labelled ℓ to q with probability 𝑝, evolving context Δ to Δ′.

Intermediate reductions
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 and

p∶q?ℓ(B)
−−−−−−−→1 (introduced by [ct-out] and [ct-in], respec-

tively) indicate readiness to send or receive. When both sides are ready, [ct-𝜏] performs the

synchronisation.

[ct-rec] handles recursion by unrolling once, replacing occurrences of twith 𝜇t.T using a standard

capture-avoiding substitution. [ct-sc] preserves the types of uninvolved participants.

Example 2.3.2. Figure 2.3 shows the possible reductions of Δalice,bob (Example 2.3.1).

Notation 2.3.1. For notational brevity, we use the following shorthands:

• Δ −→ Δ′ if ∃p, q, ℓ, 𝑝 ⋅ Δ
(p,q)ℓ
−−−−→𝑝 Δ′;

• Δ
𝛼
−→𝑝 if ∃Δ′ ⋅ Δ

𝛼
−→𝑝 Δ′;
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alice ∶ Talice, bob ∶ Tbob

alice ∶ bob&result(int).end,
bob ∶ alice⊕result⟨int⟩.end

alice ∶ end, bob ∶ end

alice ∶ bob&result(bool).end,
bob ∶ alice⊕result⟨bool⟩.end

(alice, bob)inc
0.4

(alice, bob)result
1

(alice, bob)not
0.6

(alice, bob)result
1

Figure 2.3: Reductions of Example 2.3.1.

• Δ −→𝑝 if ∃p, q, ℓ ⋅ Δ
(p,q)ℓ
−−−−→𝑝;

• Δ ↛ if ∄𝑝 ⋅ Δ −→𝑝.

2.4 Properties of typing contexts

Consider a typing context

Δbad = alice ∶ bob⊕ℓ1.end, bob ∶ alice&ℓ2.end,

with ℓ1 ≠ ℓ2. This seems bad: alice expects to send to bob, and bob expects to receive from alice,

but they disagree on a label. Δbad is an unsafe context.

Definition 2.4.1. A typing context Δ is safe, written safe(Δ), if:

• Δ
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 and Δ

q∶p?ℓ′(B′)
−−−−−−−−→1 implies Δ

(p,q)ℓ
−−−−→𝑝; and

• Δ −→ Δ′ implies safe(Δ′).

Now consider

Δ′
bad = alice ∶ bob&ℓ.end, bob ∶ alice&ℓ.end.

This time, alice and bob are waiting on each other to send a message: Δ′
bad is deadlocked.

Definition 2.4.2. A context Δ is deadlocked, written deadlock(Δ), if Δ ↛ and ∃p ⋅ Δ(p) ≠ end.

However, we can also ask a more interesting question: what is the probability that the typing
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context will stay deadlock free? For example, consider

Δpbad = alice ∶ bob⊕{
0.8 ∶ good.end
0.2 ∶ bad.bob&ℓ.end,

bob ∶ alice&{
good.end
bad.alice&ℓ.end.

Then we have

Δpbad
(alice,bob)good
−−−−−−−−−−−−→0.8 alice ∶ end, bob ∶ end

Δpbad
(alice,bob)bad
−−−−−−−−−−−→0.2 Δ′

bad.

Hence Δpbad is deadlock free with probability 0.8. We make this notion more precise with the

subsequent definitions.

Definition 2.4.3. A path 𝜉 is a (potentially infinite) sequence of contexts Δ1; Δ2; ⋯ such that

∀𝑖 ∈ [1, |𝜉 |) ⋅ Δ𝑖 −→ Δ𝑖+1.

Definition 2.4.4. A path 𝜉 = Δ1; ⋯ is complete if it is either infinite or Δ|𝜉 | ↛. We write Ξ(Δ)

for the set of all complete paths starting from Δ.

Definition 2.4.5. Given a context Δ and a set 𝑆 ⊆ Ξ(Δ), we write ℙΔ(𝑆) for the probability of

obtaining a path in 𝑆 starting from Δ.

Definition 2.4.6. Given a context Δ, its probability of deadlock freedom ℙDF(Δ) is given by

ℙDF(Δ) = ℙΔ({𝜉 = Δ1; ⋯ ∈ Ξ(Δ) | |𝜉 | = ∞ ∨ ¬deadlock(Δ|𝜉 |)}).

We say that Δ is deadlock free with probability ℙDF(Δ).

Lastly, we might want a system to terminate.

Definition 2.4.7. A context Δ has terminated, written term(Δ), if ∀p ∈ dom(Δ) ⋅ Δ(p) = end.

Definition 2.4.8. Given a context Δ, its termination probability ℙTerm(Δ) is given by

ℙTerm(Δ) = ℙΔ({𝜉 = Δ1; ⋯ ∈ Ξ(Δ) | |𝜉 | < ∞ ∧ term(Δ|𝜉 |)}).
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2.5 Typable ≠ well-behaved (for now)

Well-typed programs cannot “go wrong”.

—Robin Milner, A theory of type polymorphism in programming

This well-known slogan from [Milner, 1978] succinctly captures a (arguably, the) desirable prop-

erty of type systems. Does it hold for ours?

Admittedly, we have so far avoided the discussion of typing rules. However, the naïve rules we

might expect prove to be problematic.

Example 2.5.1. We define two sessions with undesirable properties:

1. ℳbad = alice ◁ bob⊞ℓ1.0 | bob ◁ aliceΣℓ2.0

2. ℳ′
bad = alice ◁ bobΣℓ.0 | bob ◁ aliceΣℓ.0

Then we might expect that ⊢ ℳbad ∶ Δbad and ⊢ ℳ′
bad ∶ Δ′

bad (from Section 2.4), but in fact

¬safe(Δbad) and ℙDF(Δ′
bad) = 0.

This suggests that we have an incomplete picture. We’d prefer typed programs to not deadlock,

and they definitely shouldn’t be unsafe! Following the approach in [Scalas and Yoshida, 2019],

we partially resolve this dilemma through the following typing rule:

safe({p𝑖 ∶ T𝑖}𝑖∈𝐼) ∀𝑖 ∈ 𝐼 ⋅ Γ ⊢ 𝑃𝑖 ∶ T𝑖

Γ ⊢ ∏
𝑖∈𝐼

p𝑖 ◁ 𝑃𝑖 ∶ {p𝑖 ∶ T𝑖}𝑖∈𝐼

This rule says contexts assigned in a typing judgment must be safe, so at leastℳbad is untypable.

Still ℳ′
bad is typable, but perhaps that’s fine: different applications have different thresholds for

“going wrong”. Certain systems may demand termination (ℙTerm(Δ) = 1), while others may

tolerate a weaker guarantee (say, ℙDF(Δ) ≥ 0.95). This motivates a procedure for verifying

probabilistic properties of typing contexts.



Chapter 3

Probabilistic model checking

In the previous chapter, we argued for the need to verify typing contexts. This chapter explores

one way to do so via probabilistic model checking.

Model checking is a technique for automated formal verification [Baier and Katoen, 2008]. We

first construct a model – an abstract representation of the system under consideration – and

express the desired properties in a formal system of logic. We then use an algorithm to verify

whether the properties hold in the model.

Prior work [Scalas and Yoshida, 2019] employed the modal 𝜇-calculus and the mCRL2 model-

checker [Bunte et al., 2019] to verify typing contexts in a non-probabilistic setting. We instead use

PRISM [Kwiatkowska et al., 2011], a probabilistic model checker developed here at Oxford.

3.1 PRISM semantics

To enable a precise discussion, we first formally define the relevant subset of the PRISM language.

We closely follow the PRISM documentation1 and [Carbone and Veschetti, 2024], with some

modifications to syntax and a more precise discussion of states.

Definition 3.1.1. The syntax of PRISM models is given by

𝑀,𝑁 ∶∶= {𝐶𝑖}𝑖∈𝐼 (module)

| 𝑀 || 𝑁 (composition)

1https://www.prismmodelchecker.org/doc/
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https://www.prismmodelchecker.org/doc/


CHAPTER 3. PROBABILISTIC MODEL CHECKING 13

𝐶 ∶∶= [𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖 (command, with ∑𝑖∈𝐼 𝑝𝑖 = 1 and 𝑝𝑖 ∈ [0, 1])

𝑔, 𝑔′ ∶∶= (𝑥 = 𝑣) | ¬𝑔 | 𝑔 ∧ 𝑔′ | 𝑔 ∨ 𝑔′ (guard)

𝑢, 𝑢′ ∶∶= (𝑥′ = 𝑣) | 𝑢 ∧ 𝑢′ (update)

𝑣 , 𝑣 ′ ∶∶= 𝑣 ⊙ 𝑣 ′ (arithmetic operations, with ⊙ ∈ {+, −, ×, ÷})

| 𝑥 | 𝑛 ∈ ℤ (variable or constant integer)

PRISM models are a composition of modules, each containing commands 𝐶𝑖. Each command has

an action 𝛼, guard 𝑔, and updates 𝑢𝑖, each with probability 𝑝𝑖. Guards and updates operate on

states throughout the execution of the model.

Definition 3.1.2. A state 𝑆 is a mapping {𝑥𝑖 ↦ 𝑛𝑖}𝑖∈𝐼 from variables 𝑥𝑖 to constants 𝑛𝑖. Updates

override mappings: 𝑆[(𝑥′ = 𝑛)] = (𝑆 ∖ {𝑥 ↦ 𝑆(𝑥)}) ∪ {𝑥 ↦ 𝑛}.

Remark. PRISM distinguishes equality from updates by denoting them as (𝑥 = 𝑣) and (𝑥′ = 𝑣),

respectively. In the latter, we update 𝑥, not 𝑥′!

For the sake of presentational hygiene, we treat zero-valued variables differently:

Notation 3.1.1. For all 𝑥 ∉ dom(𝑆), we treat 𝑆(𝑥) = 0.

Notation 3.1.2. We treat 𝑆 ∪ {𝑥 ↦ 0} ≡ 𝑆.

Hence we succinctly describe the state {𝑥 ↦ 42, 𝑦 ↦ 0} as {𝑥 ↦ 42}. Since PRISM initialises

every integer variable to 0, the initial state of any model is ∅.

Definition 3.1.3. A state 𝑆 is a state for model 𝑀 if every 𝑥 ∈ dom(𝑆) appears in some guard

or update in 𝑀. We call (𝑀, 𝑆) a model-state pair.

Notation 3.1.3. We write 𝑀 as a shorthand for (𝑀, ∅).

We now define the semantics of PRISM. Following [Carbone and Veschetti, 2024], we first in-

troduce a relation 𝑀 ⇝ 𝐶 (pronounced “𝑀 has command 𝐶”) to capture the effects of composi-

tion.
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[m-module]
[𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖 ∈ {𝐶𝑖}𝑖∈𝐼
{𝐶𝑖}𝑖∈𝐼 ⇝ [𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖

[m-move]
𝑀 ⇝ [𝛼] 𝑔 → ∑𝑖∈𝐼 𝜆𝑖 ∶ 𝑢𝑖 ∀𝐽 , 𝑝′

𝑗 , 𝑢
′
𝑗 , 𝑔 ⋅ 𝑁 ⇝̸ [𝛼] 𝑔′ → ∑𝑗∈𝐽 𝑝

′
𝑗 ∶ 𝑢′𝑗

𝑀 || 𝑁 ⇝ [𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖

[m-sync]
𝑀 ⇝ [𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖 𝑁 ⇝ [𝛼] 𝑔′ → ∑𝑗∈𝐽 𝑝

′
𝑗 ∶ 𝑢′𝑗

𝑀 || 𝑁 ⇝ [𝛼] 𝑔 ∧ 𝑔′ → ∑𝑖,𝑗 𝑝𝑖 ∗ 𝑝
′
𝑗 ∶ 𝑢𝑖 ∧ 𝑢′𝑗

Figure 3.1: Rules for ⇝.

[s-step]
𝑀 ⇝ [𝛼] 𝑔 → ∑𝑖∈𝐼 𝑝𝑖 ∶ 𝑢𝑖 𝑆 ⊢ 𝑔

(𝑀, 𝑆)
𝛼
−→𝑝𝑖 (𝑀, 𝑆[𝑢𝑖])

Figure 3.2: Transition rule for PRISM model-state pairs.

The rules for ⇝ are shown in Figure 3.1. [m-module] says a model with one module inherits its

commands. If𝑀 has action 𝛼 and 𝑁 does not, [m-move] keeps𝑀’s command in their composition

𝑀 || 𝑁. If both contain 𝛼, [m-sync] synchronises them, executing both commands together.

Based on this, we define the transition relation
𝛼
−→𝑝 between model–state pairs (Figure 3.2). Its

sole rule [s-step] does what we expect: if 𝑀 has a command guarded by 𝑔, and state 𝑆 satisfies 𝑔

(𝑆 ⊢ 𝑔), then with probability 𝑝𝑖, we apply the update 𝑢𝑖.

Example 3.1.1. Consider the PRISM model

𝑀ex = { [𝛼] (𝑥 = 0) → 0.7 ∶ (𝑥′ = 1) + 0.3 ∶ (𝑥′ = 2),

[𝛽] (𝑥 = 1) → 1 ∶ (𝑥′ = 0) }

|| { [𝛼] (𝑦 = 0) → 0.2 ∶ (𝑦 ′ = 1) + 0.8 ∶ (𝑦 ′ = 2),

[𝛼] (𝑦 = 1) → 1 ∶ (𝑦 ′ = 0),

[𝛾 ] (𝑦 = 2) → 1 ∶ (𝑦 ′ = 0) }.
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Then by the rules in Figure 3.1,

𝑀ex ⇝ [𝛼] (𝑥 = 0) ∧ (𝑦 = 0) → 0.14 ∶ (𝑥′ = 1) ∧ (𝑦 ′ = 1) + 0.56 ∶ (𝑥′ = 1) ∧ (𝑦 ′ = 2)

+ 0.06 ∶ (𝑥′ = 2) ∧ (𝑦 ′ = 1) + 0.24 ∶ (𝑥′ = 2) ∧ (𝑦 ′ = 2)

𝑀ex ⇝ [𝛼] (𝑥 = 0) ∧ (𝑦 = 1) → 0.7 ∶ (𝑥′ = 1) ∧ (𝑦 ′ = 0) + 0.3 ∶ (𝑥′ = 2) ∧ (𝑦 ′ = 0)

𝑀ex ⇝ [𝛽] (𝑥 = 1) → 1 ∶ (𝑥′ = 0)

𝑀ex ⇝ [𝛾] (𝑦 = 2) → 1 ∶ (𝑦 ′ = 0)

Hence by [s-move], some possible transitions are

𝑀ex
𝛼
−→0.56 (𝑀ex, {𝑥 ↦ 1, 𝑦 ↦ 2})

𝛾
−→1 (𝑀ex, {𝑥 ↦ 1})

𝛽
−→1 𝑀ex and

𝑀ex
𝛼
−→0.14 (𝑀ex, {𝑥 ↦ 1, 𝑦 ↦ 1})

𝛽
−→1 (𝑀ex, {𝑦 ↦ 1}) 𝛼

−→0.3 (𝑀ex, {𝑥 ↦ 2}).

3.2 A first look at translation

To verify typing contexts using PRISM, we need a systematic procedure for translating them into

PRISM models. Before we examine the details of the encoding, though, let us grow our intuition

with a simple example.

Example 3.2.1. In this section, we consider the following context:

Δtran = p ∶ q⊕
⎧{
⎨{⎩

0.2 ∶ ℓ1.𝜇t.q⊕ℓ1.t
0.3 ∶ ℓ2.q⊕ℓ2.end
0.5 ∶ ℓ3.end,

q ∶ p&
⎧{
⎨{⎩

ℓ1.𝜇t.p&ℓ1.t
ℓ2.p&ℓ2.end
ℓ3.end

With probability 0.2, p sends ℓ1 to q indefinitely; w.p. 0.3, ℓ2 twice; and w.p. 0.5, ℓ3 once.

3.2.1 Dealing with states

MPST is a term rewriting system, whereas PRISM is state-based. Thus, we must first determine

how to map terms into states. Our plan of attack: translate each participant in the typing context

into its own module, with variable 𝑆p tracking p’s current position in its type. We then compose

these modules into a single model.
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0 1 2 3 4 5 6 7 8
𝑆p

0.2
0.3

0.5

𝜇t.q⊕ℓ1.t q⊕ℓ2.end end

0 1 2 3 4 5 60
𝑆q

0.2

0.3

0.5

𝜇t.p&ℓ1.t p&ℓ2.end end

Figure 3.3: Illustration of states in the encoding of Δtran (Example 3.2.1). Points on the number
line represent values of 𝑆p and 𝑆q, and arrows represent transitions. Unlabelled transitions

have probability 1.

Figure 3.3 shows the state encoding for Δtran. Each typing context reduction corresponds to two

PRISM transitions. For internal choice p⊕ 𝑖∈𝐼𝑝𝑖 ∶ ℓ𝑖.T𝑖, we first make a probabilistic transition to

one of |𝐼 | intermediary states, then move to the state for T𝑖. For external choice p&𝑖∈𝐼ℓ𝑖.T𝑖, we first

move to a shared intermediary state, then branch to each T𝑖.

We deal with recursion in the obvious way: by looping back to the state of the corresponding

𝜇-binding. A special state handles end, to which all terminated participants are sent.

Definition 3.2.1. The state space of a type T, written 𝑆𝑆(T), is defined inductively:

𝑆𝑆(end) = 0

𝑆𝑆(𝜇t.T′) = 𝑆𝑆(T′)

𝑆𝑆(t) = 0

𝑆𝑆(p&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖) = 2 + ∑𝑖∈𝐼 𝑆𝑆(T𝑖)

𝑆𝑆(p⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖) = 1 + |𝐼 | + ∑𝑖∈𝐼 𝑆𝑆(T𝑖)

Each variable 𝑆p in the encoding of Δ = p ∶ T, Δ′ has a value between 0 and 𝑆𝑆(T), inclusive.
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Example 3.2.2. For the context Δtran given in Example 3.2.1,

𝑆𝑆(Δtran(p)) = 1 + 3 + 𝑆𝑆(𝜇t.q⊕ℓ1.t) + 𝑆𝑆(q⊕ℓ2.end) + 𝑆𝑆(end)

= 4 + 𝑆𝑆(q⊕ℓ1.t) + (1 + 1 + 𝑆𝑆(end)) + 0

= 4 + (1 + 1 + 𝑆𝑆(t)) + (2 + 0) + 0

= 4 + 2 + 2 = 8

𝑆𝑆(Δtran(q)) = 2 + 𝑆𝑆(𝜇t.p&ℓ1.t) + 𝑆𝑆(p&ℓ2.end) + 𝑆𝑆(end)

= 2 + 𝑆𝑆(p&ℓ1.t) + (2 + 𝑆𝑆(end)) + 0

= 2 + (2 + 𝑆𝑆(t)) + (2 + 0)

= 2 + 2 + 2 = 6,

and indeed 𝑆p ∈ [0, 8] and 𝑆q ∈ [0, 6] in Figure 3.3.

3.2.2 Synchronising modules

With an understanding of the structure of state transitions, we turn to the translation of Δtran

(Example 3.2.1). From this, we will study how communication is encoded.

Example 3.2.3. Translating Δtran from Example 3.2.1 yields the model

𝑀tran = 𝑀tran,p || 𝑀tran,q,

where the modules 𝑀tran,p and 𝑀tran,q are given by

𝑀tran,p = { [p ∶∶ q] (𝑆p = 0) → 0.2 ∶ (𝑆p′ = 1)

+ 0.3 ∶ (𝑆p′ = 2)

+ 0.5 ∶ (𝑆p′ = 3),

[p ∶∶ q ∶∶ ℓ1] (𝑆p = 1) → 1 ∶ (𝑆p′ = 4),

[p ∶∶ q ∶∶ ℓ2] (𝑆p = 2) → 1 ∶ (𝑆p′ = 6),

[p ∶∶ q ∶∶ ℓ3] (𝑆p = 3) → 1 ∶ (𝑆p′ = 8),

[p ∶∶ q] (𝑆p = 4) → 1 ∶ (𝑆p′ = 5),

[p ∶∶ q ∶∶ ℓ1] (𝑆p = 5) → 1 ∶ (𝑆p′ = 4),
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[p ∶∶ q] (𝑆p = 6) → 1 ∶ (𝑆p′ = 7),

[p ∶∶ q ∶∶ ℓ2] (𝑆p = 7) → 1 ∶ (𝑆p′ = 8) }

𝑀tran,q = { [p ∶∶ q] (𝑆q = 0) → 1 ∶ (𝑆q′ = 1),

[p ∶∶ q ∶∶ ℓ1] (𝑆q = 1) → 1 ∶ (𝑆q′ = 2),

[p ∶∶ q ∶∶ ℓ2] (𝑆q = 1) → 1 ∶ (𝑆q′ = 4),

[p ∶∶ q ∶∶ ℓ3] (𝑆q = 1) → 1 ∶ (𝑆q′ = 6),

[p ∶∶ q] (𝑆q = 2) → 1 ∶ (𝑆q′ = 3),

[p ∶∶ q ∶∶ ℓ1] (𝑆q = 3) → 1 ∶ (𝑆q′ = 3),

[p ∶∶ q] (𝑆q = 4) → 1 ∶ (𝑆q′ = 5),

[p ∶∶ q ∶∶ ℓ2] (𝑆q = 5) → 1 ∶ (𝑆q′ = 6) }.

Hence, a possible reduction sequence is

𝑀tran
p∶∶q
−−−−→0.3 (𝑀tran, {𝑆p ↦ 2, 𝑆q ↦ 1})

p∶∶q∶∶ℓ2
−−−−−−−→1 (𝑀tran, {𝑆p ↦ 6, 𝑆q ↦ 4})

p∶∶q
−−−−→1 (𝑀tran, {𝑆p ↦ 7, 𝑆q ↦ 5})

p∶∶q∶∶ℓ2
−−−−−−−→1 (𝑀tran, {𝑆p ↦ 8, 𝑆q ↦ 6}).

This corresponds to the context reductions

Δtran
(p,q)ℓ2
−−−−−→0.3 p ∶ q⊕ℓ2.end, q ∶ p&ℓ2.end

(p,q)ℓ2
−−−−−→1 p ∶ end, q ∶ end.

Earlier we mentioned that each context reduction corresponds to two transitions in PRISM. We

now make this notion more precise:
(p,q)ℓ
−−−−→𝑝 maps to

p∶∶q
−−−−→𝑝 followed by

p∶∶q∶∶ℓ
−−−−−−→1.

The first transition lets pmake a probabilistic choice. The second uses synchronisation to inform

q of p’s choice, allowing both to move to the correct next state. Crucially, only the action chosen

by p can synchronise – no other transitions are possible.

3.3 A second look at translation

We now generalise the earlier example by defining a formal encoding function. We will first

define a nearly-complete inner encoding (| ⋅ |), and then extend this with the closure module to
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(|∅|) = ∅
(|p ∶ T, Δ|) = {|T|}(p,0,𝑆𝑆(T),∅) || (|Δ|)

{|end|}(p,𝑛,𝑚,𝑓 ) = ∅

{|t|}(p,𝑛,𝑚,𝑓 ) = ∅

{|𝜇t.T|}(p,𝑛,𝑚,𝑓 ) = {|T|}(p,𝑛,𝑚,𝑓 ∪{t↦𝑛})

{|q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖|}(p,𝑛,𝑚,𝑓 ) = [q ∶∶ p] (𝑆p = 𝑛) → 1 ∶ (𝑆′p = 𝑛 + 1)

∪ ⋃
𝑖∈𝐼

[q ∶∶ p ∶∶ ℓ𝑖] (𝑆p = 𝑛 + 1) →

1 ∶
⎧{
⎨{⎩

(𝑆′p = 𝑚) if T𝑖 = end

(𝑆′p = 𝑓 (t)) if T𝑖 = t
(𝑆′p = next(𝑖)) otherwise

∪ ⋃
𝑖∈𝐼

{|T𝑖|}(p,next(𝑖),𝑚,𝑓 )

where next(𝑖) = 𝑛 + 2 + ∑{𝑗∈𝐼 | 𝑗<𝑖} 𝑆𝑆(T𝑗)

{|q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖 |}(p,𝑛,𝑚,𝑓 ) = [p ∶∶ q] (𝑆p = 𝑛) → ∑
𝑖∈𝐼

(𝑝𝑖 ∶ (𝑆′p = 𝑛 + 𝑖))

∪ ⋃
𝑖∈𝐼

[p ∶∶ q ∶∶ ℓ𝑖] (𝑆p = 𝑛 + 𝑖 →

1 ∶
⎧{
⎨{⎩

(𝑆′p = 𝑚) if T𝑖 = end

(𝑆′p = 𝑓 (t)) if T𝑖 = t
(𝑆′p = next(𝑖)) otherwise

∪ ⋃
𝑖∈𝐼

{|T𝑖|}(p,next(𝑖),𝑚,𝑓 )

where next(𝑖) = 𝑛 + 1 + |𝐼 | + ∑{𝑗∈𝐼 | 𝑗<𝑖} 𝑆𝑆(T𝑗)

Figure 3.4: The inner encoding function (| ⋅ |).

give the final encoding [[⋅]].

3.3.1 The inner encoding

Definition 3.3.1. The inner encoding function (| ⋅ |) is given in Figure 3.4.

The first two lines say that a typing context is translated by composing the modules produced by

the type-level encoding {|T|}(p,𝑛,𝑚,𝑓 ), which takes a type T being translated, participant p, current

state 𝑛, end state 𝑚 and a mapping 𝑓 from variables to their state value. The remainder concerns

the type-level translation.

No new commands are added for end or t. For recursion 𝜇t.T, we extend the mapping with t ↦ 𝑛
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and continue translating T. For& and⊕, we follow our discussion in Section 3.2.1 by first moving

to an intermediary state and proceeding to the continuation (using 𝑓 if it’s a variable).

3.3.2 Some loose ends

The inner encoding is almost correct, except it has slightly more transitions than we ought to

have.

Example 3.3.1. Consider

Δ1 = p ∶ q⊕ℓ.end.

Then Δ1 ↛, but its inner translation

(|Δ1|) = { [p ∶∶ q] (𝑆p = 0) → 1 ∶ (𝑆′p = 1),

[p ∶∶ q ∶∶ ℓ] (𝑆p = 1) → 1 ∶ (𝑆′p = 2) }

allows

(|Δ1|)
p∶∶q
−−−−→1 ((|Δ1|), {𝑆p ↦ 1})

p∶∶q∶∶ℓ
−−−−−−→1 ((|Δ1|), {𝑆p ↦ 2}).

Example 3.3.2. Consider

Δ2 = p ∶ q⊕ℓ1.end, q ∶ p&ℓ2.end.

Then again Δ2 ↛, but its inner translation

(|Δ2|) = { [p ∶∶ q] (𝑆p = 0) → 1 ∶ (𝑆′p = 1),

[p ∶∶ q ∶∶ ℓ1] (𝑆p = 1) → 1 ∶ (𝑆′p = 2) }

|| { [p ∶∶ q] (𝑆q = 0) → 1 ∶ (𝑆′q = 1),

[p ∶∶ q ∶∶ ℓ2] (𝑆q = 1) → 1 ∶ (𝑆′q = 2) }

allows

(|Δ2|)
p∶∶q
−−−−→1 ((|Δ2|), {𝑆p ↦ 1, 𝑆q ↦ 1})

p∶∶q∶∶ℓ1
−−−−−−−→1 ((|Δ1|), {𝑆p ↦ 2, 𝑆q ↦ 1})

(|Δ2|)
p∶∶q
−−−−→1 ((|Δ2|), {𝑆p ↦ 1, 𝑆q ↦ 1})

p∶∶q∶∶ℓ2
−−−−−−−→1 ((|Δ1|), {𝑆p ↦ 1, 𝑆q ↦ 2}).
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More precisely, we treat
p∶∶q
−−−−→ and

p∶∶q∶∶ℓ
−−−−−−→ transitions as communications, implicitly assuming

both p and q participate. However, in some cases, only one of p or q contains this action, and

[m-move] permits such transitions to occur without synchronisation.

Thus, we introduce a closure module that blocks these spurious transitions.

Definition 3.3.2. Let actionsΔ(p) be the set of actions in (|p ∶ Δ(p)|). If p ∉ dom(Δ), then we

treat actionsΔ(p) = ∅. We write actions(Δ) = ⋃p∈dom(Δ) actionsΔ(p).

Definition 3.3.3. We define diffΔ(p, q) as the symmetric difference of actions:

diffΔ(p, q) = actionsΔ(p) ⊕ actionsΔ(q).

Definition 3.3.4. The closure module for the context Δ is given by

closure(Δ) = {disallow(p ∶∶ q) | p ∶∶ q ∈ diffΔ(p, q)}

∪ {disallow(p ∶∶ q ∶∶ ℓ) | p ∶∶ q ∶∶ ℓ ∈ diffΔ(p, q)},

where disallow(𝛼) blocks 𝛼:

disallow(𝛼) = [𝛼] false → 1 ∶ ().

The () denotes a dummy update – it will never be applied.

Definition 3.3.5. The encoding [[⋅]] of contexts into PRISM models is defined by

[[Δ]] = (|Δ|) || closure(Δ).

Example 3.3.3. Translating Δ1 (Example 3.3.1) yields

[[Δ1]] = { [p ∶∶ q] (𝑆p = 0) → 1 ∶ (𝑆′p = 1),

[p ∶∶ q ∶∶ ℓ] (𝑆p = 1) → 1 ∶ (𝑆′p = 2) }

|| { [p ∶∶ q] false → 1 ∶ (),

[p ∶∶ q ∶∶ ℓ] false → 1 ∶ () },
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and thus [[Δ1]] ↛.

3.4 Correctness

We now address correctness of the encoding with respect to operational semantics. First, we

show that the encoding is sound (Theorem 3.4.9): every typing context reduction corresponds to

transitions in the encoded module. Next, we demonstrate that the encoding is complete (Theo-

rem 3.4.15): PRISM transitions also correspond to typing context reductions.

3.4.1 Soundness

Taking a compositional approach, we first show that the inner encoding (|Δ|) is sound with re-

spect to the internal transitions
p∶q!ℓ⟨B⟩
−−−−−−−→ and

p∶q?ℓ(B)
−−−−−−−→ (Lemma 3.4.5). We then use this result to

demonstrate the soundness of [[Δ]].

A result we ought to have is that (| ⋅ |) preserves behaviour under recursion unfolding: (|p ∶ 𝜇t.T|)

should be equivalent to (|p ∶ T{𝜇t.T/t}|). But what does it mean for PRISM modules to be equiv-

alent? Though their internal states and commands may differ, they should exhibit the same ob-

servable transition behaviour. Thismotivates the use of bisimulation to define equivalence.

Definition 3.4.1. Let (𝑀1, 𝐼1) and (𝑀2, 𝐼2) be PRISM model-state pairs. A binary relation 𝑅 is

a bisimulation if:

1. (𝐼1, 𝐼2) ∈ 𝑅, and

2. For all (𝑆1, 𝑆2) ∈ 𝑅, action 𝛼 and 𝑝 ∈ [0, 1],

(𝑀1, 𝑆1)
𝛼
−→𝑝 (𝑀1, 𝑆′1) ⟹ ∃𝑆′2 s.t. (𝑀2, 𝑆2)

𝛼
−→𝑝 (𝑀2, 𝑆′2) and (𝑆′1, 𝑆′2) ∈ 𝑅; and

(𝑀2, 𝑆2)
𝛼
−→𝑝 (𝑀2, 𝑆′2) ⟹ ∃𝑆′1 s.t. (𝑀1, 𝑆1)

𝛼
−→𝑝 (𝑀1, 𝑆′1) and (𝑆′1, 𝑆′2) ∈ 𝑅.

We say (𝑀1, 𝐼1) and (𝑀2, 𝐼2) are bisimilar if such a relation 𝑅 exists, and write (𝑀1, 𝐼1) ∼

(𝑀2, 𝐼2).

Bisimulation allows us to write a coinductive proof. To show two model-state pairs are bisimilar,

we define a relation 𝑅 and verify it satisfies the bisimulation conditions. To define 𝑅, though,

we need a precise way of reasoning about the reductions available from a state. We therefore
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sourcep∶T = source′(p,0,∅)(T)

∪ {{𝑆p ↦ 𝑆𝑆(T)} ↦ (end, 0, ∅) }
source′(p,𝑛,𝑓 )(end) = ∅

source′(p,𝑛,𝑓 )(t) = ∅

source′(p,𝑛,𝑓 )(𝜇t.T) = source′(p,𝑛,𝑓 ∪{t↦{𝑆p↦𝑛}})(T)

source′(p,𝑛,𝑓 )(q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖) = {{𝑆p ↦ 𝑛} ↦ (q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖, 0, 𝑓 ),

{𝑆p ↦ 𝑛 + 1} ↦ (q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖, 1, 𝑓 )}

∪⋃
𝑖∈𝐼

source′(p,next(𝑖),𝑓 )(T𝑖)

where next(𝑖) = 𝑛 + 2 + ∑{𝑗∈𝐼 |𝑗<𝑖} 𝑆𝑆(T𝑖)

source′(p,𝑛,𝑓 )(q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖) = {{𝑆p ↦ 𝑛} ↦ (q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖, 0, 𝑓 )}

∪⋃
𝑖∈𝐼
{{𝑆p ↦ 𝑛 + 𝑖} ↦ (q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖, 𝑖, 𝑓 )}

∪⋃
𝑖∈𝐼

source′(p,next(𝑖),𝑓 )(T𝑖)

where next(𝑖) = 𝑛 + 1 + |𝐼 | + ∑{𝑗∈𝐼 |𝑗<𝑖} 𝑆𝑆(T𝑖)

Figure 3.5: Definition of sourcep∶T(𝑆).

introduce a source function that identifies the location of a state within its encoding.

Definition 3.4.2. The source of a state 𝑆 within the module (|p ∶ T|), written sourcep∶T(𝑆), is

given in Figure 3.5.

The function outputs a triple sourcep∶T(𝑆) = (T′, 𝑥, 𝑓 ). The first element T′ is an end, ⊕, or &

occurring as a partial type of T, representing the substructure of T associated with the state. The

value 𝑥 indicates the state’s position: 𝑥 = 0 marks the entry point, while higher values denote

later stages in the transition. Finally, 𝑓 maps variables to their corresponding states.

Example 3.4.1. Consider the type T defined by

T = q⊕{
0.1 ∶ ℓ1.end
0.9 ∶ ℓ2.𝜇t.q⊕ℓ3.t

The possible states of (|p ∶ T|) and their corresponding sources are illustrated in Figure 3.6.

The following proposition says that sourcep∶T(𝑆) really does what we expect.
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∅
(T, 0, ∅)

{𝑆p ↦ 1}
(T, 1, ∅)

{𝑆p ↦ 2}
(T, 2, ∅)

{𝑆p ↦ 5}
(end, 0, ∅)

{𝑆p ↦ 3}
(q⊕ℓ3.t, 0, {t ↦ {𝑆p ↦ 3}})

{𝑆p ↦ 4}
(q⊕ℓ3.t, 1, {t ↦ {𝑆p ↦ 3}})

0.1

0.9

Figure 3.6: Transitions of (|p ∶ T|) (Example 3.4.1). Nodes are labelled with their state 𝑆 and
corresponding sourcep∶T(𝑆) on separate lines. Unlabelled transitions have probability 1.

Proposition 3.4.1. Let T be a type and 𝑆 a state for (|p ∶ T|). Then:

1. If sourcep∶T(𝑆) = (end, 0, ∅), then ((|p ∶ T|), 𝑆) ↛.

2. If sourcep∶T(𝑆) = (q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖, 0, 𝑓 ), then ((|p ∶ T|), 𝑆)
q∶∶p
−−−−→1 ((|p ∶ T|), 𝑆′) where

sourcep∶T(𝑆′) = (q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖, 1, 𝑓 ).

3. If sourcep∶T(𝑆) = (q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖, 1, 𝑓 ), then ∀𝑖 ∈ 𝐼 ⋅ ((|p ∶ T|), 𝑆)
q∶∶p∶∶ℓ𝑖
−−−−−−→1 ((|p ∶ T|), 𝑆′)

where 𝑆′ = 𝑓 (t) if T𝑖 = t, and otherwise

sourcep∶T(𝑆′) =
⎧{
⎨{⎩

(end, 0, ∅) if T𝑖 = end

(T′, 0, 𝑓 ∪ ⋃𝑖{t𝑖 ↦ 𝑆′}) if T𝑖 = 𝜇t1 ⋯𝜇t𝑛.T′

(T𝑖, 0, 𝑓 ) otherwise.

4. If sourcep∶T(𝑆) = (q⊕ 𝑖∈𝐼𝑝𝑖 ∶ ℓ𝑖⟨B𝑖⟩.T𝑖, 0, 𝑓 ), then ∀𝑖 ∈ 𝐼 ⋅ ((|p ∶ T|), 𝑆)
p∶∶q
−−−−→𝑝𝑖 ((|p ∶ T|), 𝑆′)

with sourcep∶T(𝑆′) = (q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖, 𝑖, 𝑓 ).

5. If sourcep∶T(𝑆) = (q⊕ 𝑖∈𝐼𝑝𝑖 ∶ ℓ𝑖⟨B𝑖⟩.T𝑖, 𝑖, 𝑓 ) with 𝑖 > 0, then ((|p ∶ T|), 𝑆)
p∶∶q∶∶ℓ𝑖
−−−−−−→1

((|p ∶ T|), 𝑆′) where 𝑆′ = 𝑓 (t) if T𝑖 = t, and otherwise

sourcep∶T(𝑆′) =
⎧{
⎨{⎩

(end, 0, ∅) if T𝑖 = end

(T′, 0, 𝑓 ∪ ⋃𝑖{t𝑖 ↦ 𝑆′}) if T𝑖 = 𝜇t1 ⋯𝜇t𝑛.T′

(T𝑖, 0, 𝑓 ) otherwise.

Moreover, ((|p ∶ T|), 𝑆) cannot make any other transitions.

Proof. By induction on T, walking through the recursive calls of source′(p,𝑛,𝑓 )(T) and {|T|}(p,𝑛,𝑚,𝑓 ′)

in parallel. In particular, we maintain the invariant that source′(p,𝑛,𝑓 )(T) is called iff {|T|}(p,𝑛,𝑚,𝑓 ′)

is called, where 𝑓 (t) = {𝑆p ↦ 𝑓 ′(t)} for all t.
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𝜇t 1 .q 2⊕{
0.5 ∶ ℓ1.t

3

0.5 ∶ ℓ2.end
4 q 2⊕

⎧
{
⎨
{
⎩

0.5 ∶ ℓ1.𝜇t
1 3 .q 2 ⊕{

0.5 ∶ ℓ1.t
3

0.5 ∶ ℓ2.end
4

0.5 ∶ ℓ2.end
4

Figure 3.7: Unfold correspondence for Example 3.4.2. Partial types that are unfold
correspondent are annotated with the same circled number.

How shall we define the bisimulation relation for (|p ∶ 𝜇t.T|) ∼ (|p ∶ T{𝜇t.T/t}|)? We’d like to

relate equivalent partial types of 𝜇t.T and T{𝜇t.T/t}, modulo unrolling of t (see Figure 3.7). We

tackle this by introducing a novel unfold correspondence relation.

Definition 3.4.3. The unfold correspondence of two partial typeswith respect to T and t, written

⊑T,t, is the least relation satisfying the following rules.

[uc-refl]

T′ ⊑T,t T′

[uc-t]

t ⊑T,t 𝜇t.T

[uc-rec]
t′ ≠ t T1 ⊑T,t T2
𝜇t′.T1 ⊑T,t 𝜇t′.T2

[uc-out]
∀𝑖 ∈ 𝐼 ∶ T𝑖 ⊑T,t T′𝑖

q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖 ⊑T,t q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖

[uc-in]
∀𝑖 ∈ 𝐼 ∶ T𝑖 ⊑T,t T′𝑖

q&𝑖∈𝐼ℓ𝑖(B𝑖).T𝑖 ⊑T,t q&𝑖∈𝐼ℓ𝑖(B𝑖).T′𝑖

Example 3.4.2. Let T = q ⊕ {0.5 ∶ ℓ1.t, 0.5 ∶ ℓ2.end}. The following derivation tree shows

T ⊑T,t T{𝜇t.T/t}:

t ⊑T,t 𝜇t.q⊕{0.5 ∶ ℓ1.t, 0.5 ∶ ℓ2.end}
[uc-t]

end ⊑T,t end
[uc-refl]

q⊕{0.5 ∶ ℓ1.t, 0.5 ∶ ℓ2.end} ⊑T,t q⊕{0.5 ∶ ℓ1.𝜇t.q⊕{0.5 ∶ ℓ1.t, 0.5 ∶ ℓ2.end}, 0.5 ∶ ℓ2.end}
[uc-out]

Figure 3.7 illustrates all unfold correspondences between partial types of 𝜇t.T and T{𝜇t.T/t}.

Lemma 3.4.2. For all types T, T′ and variable t, T′ ⊑T,t T′{𝜇t.T/t}.

Proof. Straightforward induction on the structure of T′.

Lemma 3.4.3. For every type T, (|p ∶ 𝜇t.T|) ∼ (|p ∶ T{𝜇t.T/t}|).

Proof. Suppose 𝑆1 and 𝑆2 are states for (|p ∶ 𝜇t.T|) and (|p ∶ T{𝜇t.T/t}|) respectively, and let
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(T1, 𝑥1, 𝑓1) = sourcep∶𝜇t.T(𝑆1) and (T2, 𝑥2, 𝑓2) = sourcep∶T{𝜇t.T/t}(𝑆2).

Define a binary relation 𝑅 to be the least relation such that (𝑆1, 𝑆2) ∈ 𝑅 if:

• 𝑥1 = 𝑥2, and

• T1 ⊑T,t 𝑇2, and

• ∀t′ ∈ dom(𝑓1) ∩ dom(𝑓2) ⋅ (𝑓1(t′), 𝑓2(t′)) ≠ (𝑆1, 𝑆2) ⟹ (𝑓1(t′), 𝑓2(t′)) ∈ 𝑅.

We will argue that 𝑅 is a bisimulation relation.

Take any (𝑆1, 𝑆2) ∈ 𝑅, and again let (T1, 𝑥, 𝑓1) = sourcep∶𝜇t.T(𝑆1) and (T2, 𝑥, 𝑓2) = sourcep∶T{𝜇t.T/t}(𝑆2).

Since T1 ⊑T,t T2, both types must be end, ⊕, or & (the latter two sharing the same participants,

labels, basic types, and probabilities).

In the first case, both ((|p ∶ 𝜇t.T|), 𝑆1) ↛ and ((|p ∶ T{𝜇t.T/t}|), 𝑆2) ↛.

For the second case, suppose T1 = q⊕𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖 , and T2 = q⊕𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T″𝑖 . There are two

cases to consider, depending on the value of 𝑥.

1. If 𝑥 = 0, then by Proposition 3.4.1, the only possible transitions are

((|p ∶ 𝜇t.T|), 𝑆1)
p∶∶q
−−−−→𝑝𝑘 ((|p ∶ 𝜇t.T|), 𝑆′1)

((|p ∶ T{𝜇t.T/t}|), 𝑆2)
p∶∶q
−−−−→𝑝𝑘 ((|p ∶ T{𝜇t.T/t}|), 𝑆′2)

for all 𝑘 ∈ 𝐼, with sourcep∶𝜇t.T(𝑆′1) = (T1, 𝑘, 𝑓1) and sourcep∶T{𝜇t.T/t}(𝑆′2) = (T2, 𝑘, 𝑓1). Since

(𝑆1, 𝑆2) ∈ 𝑅, we already have T1 ⊑T,t T2; therefore, (𝑆′1, 𝑆′2) ∈ 𝑅 also.

2. If 𝑥 > 0, then the only possible transitions are

((|p ∶ 𝜇t.T|), 𝑆1)
p∶∶q∶∶ℓ𝑥
−−−−−−−→1 ((|p ∶ 𝜇t.T|), 𝑆′1)

((|p ∶ T{𝜇t.T/t}|), 𝑆2)
p∶∶q∶∶ℓ𝑥
−−−−−−−→1 ((|p ∶ T{𝜇t.T/t}|), 𝑆′2).

We consider the structurally possible cases of T′𝑥 and T″𝑥 . By Proposition 3.4.1:

(a) if T′𝑥 = T″𝑥 = end, then sourcep∶𝜇t.T(𝑆′1) = sourcep∶𝜇t.T(𝑆′2) = (end, 0, ∅);

(b) if T′𝑥 = T″𝑥 = t′ (potentially t′ = t), then 𝑆′1 = 𝑓1(t) and 𝑆′2 = 𝑓2(t);

(c) if T′𝑥 = 𝜇t′1 ⋯𝜇t′𝑛.T′ and T″𝑥 = 𝜇t′1 ⋯𝜇t′𝑛.T″, then sourcep∶𝜇t.T(𝑆′1) = (T′, 0, 𝑓1∪⋃𝑖{t
′
𝑖 ↦
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𝑆′1}) and sourcep∶𝜇t.T(𝑆′2) = (T″, 0, 𝑓2 ∪⋃𝑖{t
′
𝑖 ↦ 𝑆′2}), and T′ ⊑T,t T″ by the definition

of ⊑T,t;

(d) if T′𝑥 = t and T″𝑥 = 𝜇t.T, then sourcep∶𝜇t.T(𝑆′1) = (T, 0, {t ↦ 𝑆′1}) (in fact, S′1 = ∅) and

sourcep∶T{𝜇t.T/t}(𝑆′2) = (T, 0, 𝑓2 ∪ {t ↦ 𝑆′2});

(e) otherwise, sourcep∶𝜇t.T(𝑆′𝑥) = (T′𝑥, 0, 𝑓1) and sourcep∶T{𝜇t.T/t}(𝑆′2) = (T″𝑥 , 0, 𝑓2), with

T′𝑥 ⊑T,t T″𝑥 by the definition of ⊑T,t.

Thus, in all cases, (𝑆′1, 𝑆′2) ∈ 𝑅.

The third case is analogous. Finally, sourcep∶𝜇t.T(∅) = (T, 0, {t ↦ ∅}) and sourcep∶T{𝜇t.T/t}(∅) =

(T{𝜇t.T/t}, 0, ∅), so applying Lemma 3.4.2, (∅, ∅) ∈ 𝑅. Hence 𝑅 is a bisimulation relation, and

we conclude (|p ∶ 𝜇t.T|) ∼ (|p ∶ T{𝜇t.T/t}|).

We now prove a simple result about modules that enter the state space of a closed type.

Lemma 3.4.4. Let T, T′ be (closed) types, and 𝑆 a state for (|p ∶ T|) such that sourcep∶T(𝑆) =

(T′, 0, 𝑓 ). Then ((|p ∶ T|), 𝑆) ∼ (|p ∶ T′|).

Proof. Let 𝑆1, 𝑆2 be states for (|p ∶ T|) and (|p ∶ T′|), respectively. Let (T1, 𝑥1, 𝑓1) = sourcep∶T(𝑆1)

and (T2, 𝑥2, 𝑓2) = sourcep∶T′(𝑆2). We define a relation 𝑅 as the least relation such that:

1. (T1, 𝑥1) = (T2, 𝑥2);

2. ∀t′ ∈ dom(𝑓1) ∩ dom(𝑓2) ⋅ (𝑓1(t′), 𝑓2(t′)) ≠ (𝑆1, 𝑆2) ⟹ (𝑓1(t′), 𝑓2(t′)) ∈ 𝑅.

We proceed as in Lemma 3.4.3 to argue that 𝑅 is a bisimulation relation. Notably, (𝑆, ∅) ∈ 𝑅.

This enables us to prove the soundness of (|p ∶ T|).

Lemma 3.4.5.

1. If p ∶ T
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 p ∶ T′, then

∃𝑆1, 𝑆2 ⋅ (|p ∶ T|)
p∶∶q
−−−−→𝑝 ((|p ∶ T|), 𝑆1)

p∶∶q∶∶ℓ
−−−−−−→1 ((|p ∶ T|), 𝑆2) ∼ (|p ∶ T′|).

2. If p ∶ T
p∶q?ℓ(B)
−−−−−−−→1 p ∶ T′, then

∃𝑆1, 𝑆2 ⋅ (|p ∶ T|)
q∶∶p
−−−−→1 ((|p ∶ T|), 𝑆1)

q∶∶p∶∶ℓ
−−−−−−→1 ((|p ∶ T|), 𝑆2) ∼ (|p ∶ T′|).
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Proof.

1. We proceed by induction on the rules of −→.

Case [ct-out] Let T = q⊕𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T𝑖, and suppose p ∶ T
p∶q!ℓ𝑘⟨B𝑘⟩
−−−−−−−−→𝑝𝑘 p ∶ T𝑘 for some

𝑘 ∈ 𝐼. Then by the definition of (| ⋅ |),

∃𝑆1, 𝑆2 ⋅ (|p ∶ T|)
p∶∶q
−−−−→𝑝𝑘 ((|p ∶ T|), 𝑆1)

p∶∶q∶∶ℓ𝑘
−−−−−−−→1 ((|p ∶ T|), 𝑆2).

Since T𝑘 is closed, ((|p ∶ T|), 𝑆2) ∼ (|p ∶ T𝑘|) by Lemma 3.4.4.

Case [ct-rec] Suppose p ∶ 𝜇t.T
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 p ∶ T′. By the inductive hypothesis,

∃𝑆1, 𝑆2 ⋅ (|p ∶ T{𝜇t.T/t}|)
p∶∶q
−−−−→𝑝 ((|p ∶ T{𝜇t.T/t}|), 𝑆1)
p∶∶q∶∶ℓ
−−−−−−→1 ((|p ∶ T{𝜇t.T/t}|), 𝑆2) ∼ (|p ∶ T′|).

But (|p ∶ 𝜇t.T|) ∼ (|p ∶ T{𝜇t.T/t}|) by Lemma 3.4.3, and hence

∃𝑆′1, 𝑆′2 ⋅ (|p ∶ 𝜇t.T|)
p∶∶q
−−−−→𝑝 ((|p ∶ 𝜇t.T|), 𝑆′1)

p∶∶q∶∶ℓ
−−−−−−→1 ((|p ∶ 𝜇t.T|), 𝑆′2) ∼ (|p ∶ T′|).

2. Analogous.

We now explore results that link the inner encoding (| ⋅ |) with the full encoding [[⋅]]. Firstly, we

define what it means to combine states.

Definition 3.4.4. Let 𝑆1 and 𝑆2 be states for a PRISM module 𝑀. Their union is given by

(𝑆1 ∪ 𝑆2)(𝑥) =
⎧{
⎨{⎩

𝑆1(𝑥) if 𝑥 ∈ dom(𝑆1), 𝑥 ∉ dom(𝑆2)
𝑆2(𝑥) if 𝑥 ∈ dom(𝑆2), 𝑥 ∉ dom(𝑆1)
undefined otherwise.

Using this definition, we formalise the relationship between the two encodings.

Lemma 3.4.6. Let Δ = p ∶ T, q ∶ T′, Δ′ be a context. If ((|p ∶ T|), 𝑆1)
𝛼
−→𝑝 ((|p ∶ T|), 𝑆′1) and
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((|q ∶ T′|), 𝑆2)
𝛼
−→1 ((|q ∶ T′|), 𝑆′2), then for any state 𝑆 of (|Δ′|),

([[Δ]], 𝑆1 ∪ 𝑆2 ∪ 𝑆)
𝛼
−→𝑝 ([[Δ]], 𝑆′1 ∪ 𝑆′2 ∪ 𝑆).

Proof. By case analysis on 𝛼 = p ∶∶ q or p ∶∶ q ∶∶ ℓ.

Lemma 3.4.7. Let Δ = p ∶ T, q ∶ T′, Δ′ be a context. Further let 𝑆1 and 𝑆′1 be states of (|p ∶ T|),

𝑆2 and 𝑆′2 states of (|q ∶ T′|), and 𝑆 a state of (|Δ′|). If

([[Δ]], 𝑆1 ∪ 𝑆2 ∪ 𝑆)
𝛼
−→𝑝 ([[Δ]], 𝑆′1 ∪ 𝑆′2 ∪ 𝑆)

with 𝛼 = p ∶∶ q or p ∶∶ q ∶∶ ℓ, then

((|p ∶ T|), 𝑆1)
𝛼
−→𝑝 ((|p ∶ T|), 𝑆′1) and ((|q ∶ T′|), 𝑆2)

𝛼
−→1 ((|q ∶ T′|), 𝑆′2).

Proof. We first argue using the definition of closure(⋅) that 𝛼 ∈ actionsΔ(p) ∩ actionsΔ(q), and

proceed by case analysis on 𝛼.

These results reveal a useful property: bisimulation on (| ⋅ |) is closed under composition!

Lemma 3.4.8. Let Δ = p1 ∶ T1, ⋯ , pn ∶ T𝑛 and Δ′ = p1 ∶ T′1, ⋯ , pn ∶ T′𝑛. If ((|pi ∶ T𝑖|), 𝑆𝑖) ∼

(|pi ∶ T′𝑖 |) for all 𝑖, then ([[Δ]], 𝑆1 ∪ ⋯ ∪ 𝑆𝑛) ∼ [[Δ′]].

Proof. For all 𝑖, let 𝑅𝑖 be a bisimulation relation for ((|pi ∶ T𝑖|), 𝑆𝑖) ∼ (|pi ∶ T′𝑖 |). Now let

𝑅 = {((𝑇1 ∪ 𝑇2 ∪ ⋯ ∪ 𝑇𝑛), (𝑇 ′
1 ∪ 𝑇 ′

2 ∪ ⋯ ∪ 𝑇 ′
𝑛 )) | ∀𝑖 ⋅ (𝑇𝑖, 𝑇 ′

𝑖 ) ∈ 𝑅𝑖}.

We then check that 𝑅 is a bisimulation relation by case analysis on 𝛼 and using Lemmas 3.4.6

and 3.4.7.

We are now ready to prove soundness.

Theorem 3.4.9 (Soundness). For every context Δ, Δ′ and probability 𝑝 with Δ −→𝑝 Δ′, there

exists 𝑆 such that [[Δ]] →2
𝑝 ([[Δ]], 𝑆) and [[Δ′]] ∼ ([[Δ]], 𝑆).

Proof. Let Δ = p1 ∶ T1, ⋯ , pn ∶ T𝑛. Without loss of generality, we assume Δ
(p1,p2)ℓ
−−−−−−→𝑝 Δ′, so



CHAPTER 3. PROBABILISTIC MODEL CHECKING 30

Δ′ = p1 ∶ T′1, p2 ∶ T′2, p3 ∶ T3, ⋯ , pn ∶ T𝑛. Then,

[[Δ]] = (|p1 ∶ T1|) || … || (|pn ∶ T𝑛|) || closure(Δ) and

[[Δ′]] = (|p1 ∶ T′1|) || (|p2 ∶ T′2|) || (|p3 ∶ T3|) || … || (|pn ∶ T𝑛|) || closure(Δ′).

By [ct-𝜏], we must have p1 ∶ T1
p1∶p2!ℓ⟨B⟩
−−−−−−−−→𝑝 p1 ∶ T′1 and p2 ∶ T2

p2∶p1?ℓ(B)
−−−−−−−−−→1 p2 ∶ T′2. Applying

Lemma 3.4.5, there exist states 𝑆1, 𝑆′1, 𝑆2, 𝑆′2 such that

(|p1 ∶ T1|)
p1∶∶p2
−−−−−→𝑝 ((|p1 ∶ T1|), 𝑆1)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ((|p1 ∶ T1|), 𝑆′1) ∼ (|p1 ∶ T′1|),

(|p2 ∶ T2|)
p1∶∶p2
−−−−−→1 ((|p2 ∶ T2|), 𝑆2)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ((|p2 ∶ T2|), 𝑆′2) ∼ (|p2 ∶ T′2|).

We collapse the left three columns using Lemma 3.4.6:

[[Δ]]
p1∶∶p2
−−−−−→𝑝 ([[Δ]], 𝑆1 ∪ 𝑆2)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ([[Δ]], 𝑆′1 ∪ 𝑆′2).

Finally, we appeal to Lemma 3.4.8 to conclude ([[Δ]], 𝑆′1 ∪ 𝑆′2) ∼ [[Δ′]].

3.4.2 Completeness

We first prove a weaker result (Lemma 3.4.11), following the approach for soundness by first

considering (| ⋅ |) (Lemma 3.4.10) then generalising to [[⋅]].

Lemma 3.4.10.

1. If (|p ∶ T|)
p∶∶q
−−−−→𝑝 ((|p ∶ T|), 𝑆)

p∶∶q∶∶ℓ
−−−−−−→1 ((|p ∶ T|), 𝑆′), then

∃T′ ⋅ p ∶ T
p∶q!ℓ⟨B⟩
−−−−−−−→𝑝 p ∶ T′ and ((|p ∶ T|), 𝑆′) ∼ (|p ∶ T′|).

2. If (|p ∶ T|)
q∶∶p
−−−−→1 ((|p ∶ T|), 𝑆)

q∶∶p∶∶ℓ
−−−−−−→1 ((|p ∶ T|), 𝑆′), then

∃T′ ⋅ p ∶ T
p∶q?ℓ(B)
−−−−−−−→1 p ∶ T′ and ((|p ∶ T|), 𝑆′) ∼ (|p ∶ T′|).

Proof. Examining the definition of (| ⋅ |), T must have the form

T = 𝜇t1.𝜇t2. ⋯ 𝜇t𝑛.q⊕ 𝑖∈𝐼𝑝𝑖 ∶ℓ𝑖⟨B𝑖⟩.T′𝑖 .
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for (1), and

T = 𝜇t1.𝜇t2. ⋯ 𝜇t𝑛.q&𝑖∈𝐼ℓ𝑖(B𝑖).T′𝑖 .

for (2). We proceed by induction on 𝑛, using Lemma 3.4.4 for the base case and Lemma 3.4.3 for

the inductive case.

Lemma 3.4.11. For every context Δ and states 𝑆, 𝑆′ such that [[Δ]]
p∶∶q
−−−−→𝑝 ([[Δ]], 𝑆)

p∶∶q∶∶ℓ
−−−−−−→1

([[Δ]], 𝑆′), there exists Δ′ with Δ −→𝑝 Δ′ and ([[Δ]], 𝑆′) ∼ [[Δ′]].

Proof. Let Δ = p1 ∶ T1, ⋯ , pn ∶ T𝑛, and without loss of generality, suppose p = p1 and q = p2.

Then,

[[Δ]] = (|p1 ∶ T1|) || … || (|pn ∶ T𝑛|) || closure(Δ).

Let us rewrite 𝑆 = 𝑆1 ∪ 𝑆2 and 𝑆′ = 𝑆′1 ∪𝑆′2 where 𝑆1, 𝑆′1 are states for (|p1 ∶ T1|) and 𝑆2, 𝑆′2 are states

for (|p2 ∶ T2|), so that

[[Δ]]
p1∶∶p2
−−−−−→𝑝 ([[Δ]], 𝑆1 ∪ 𝑆2)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ([[Δ]], 𝑆′1 ∪ 𝑆′2).

Then by two applications of Lemma 3.4.7,

(|p1 ∶ T1|)
p1∶∶p2
−−−−−→𝑝 ((|p1 ∶ T1|), 𝑆1)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ((|p1 ∶ T1|), 𝑆′1),

(|p2 ∶ T2|)
p1∶∶p2
−−−−−→1 ((|p2 ∶ T2|), 𝑆2)

p1∶∶p2∶∶ℓ
−−−−−−−−→1 ((|p2 ∶ T2|), 𝑆′2).

Applying Lemma 3.4.10, there exist T′1, T′2 such that

p1 ∶ T1
p1∶p2!ℓ⟨B⟩
−−−−−−−−→𝑝 p1 ∶ T′1, p2 ∶ T2

p2∶p1?ℓ(B)
−−−−−−−−−→1 p2 ∶ T′2,

((|p1 ∶ T1|), 𝑆′1) ∼ (|p1 ∶ T′1|), ((|p2 ∶ T2|), 𝑆′2) ∼ (|p2 ∶ T′2|).

Let Δ′ = p1 ∶ T′1, p2 ∶ T′2, p3 ∶ T3, ⋯ , pn ∶ T𝑛. Then Δ
(p1,p2)ℓ
−−−−−−→𝑝 Δ′ by [ct-𝜏] and [ct-sc], and by

Lemma 3.4.8, ([[Δ]], 𝑆′) = ([[Δ]], 𝑆′1 ∪ 𝑆′2) ∼ [[Δ′]], as required.

This is a weaker result as it mandates
p∶∶q
−−−−→ and

p∶∶q∶∶ℓ
−−−−−−→ to occur consecutively, rather than

allowing an arbitrary interleaving of transitions.

However, defining the general behaviour is tricky – there’s no typing context reduction directly

corresponding to a single partial transition
p∶∶q
−−−−→! Intuitively, if [[Δ]]

p∶∶q
−−−−→ ([[Δ]], 𝑆), then ([[Δ]], 𝑆)
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should still be related to [[Δ]] even if not bisimilar, since the transition isn’t complete until the

corresponding
p∶∶q∶∶ℓ
−−−−−−→ occurs.

We encode this intuition into a notion of refinement via partial transitions.

Definition 3.4.5 (Refinement via partial transitions). We say ([[Δ]], 𝑆) refines ([[Δ′]], 𝑆′) via

partial transitions with probability 𝑝, written ([[Δ]], 𝑆) ⊂∼𝑝 ([[Δ′]], 𝑆′), if they satisfy the follow-

ing rules:

1. if (𝑀, 𝑆) ∼ (𝑀′, 𝑆′), then ([[Δ]], 𝑆) ⊂∼1 ([[Δ
′]], 𝑆′);

2. if ∃𝑆″ ⋅ ([[Δ′]], 𝑆′)
p∶∶q
−−−−→𝑝 ([[Δ′]], 𝑆″) and ([[Δ]], 𝑆) ⊂∼𝑝′ ([[Δ′]], 𝑆″), then ([[Δ]], 𝑆) ⊂∼𝑝⋅𝑝′

([[Δ′]], 𝑆′).

This allows us to relate model-state pairs separated only by partial transitions. It turns out that

this happens exactly when partial transitions involve distinct participants:

Notation 3.4.1. We write ([[Δ]], 𝑆)
(_∶∶_)∗
−−−−−−→𝑝 ([[Δ]], 𝑆′) if ∃𝑆1, … , 𝑆𝑛 such that

([[Δ]], 𝑆)
p1∶∶q1
−−−−−→𝑝1 ([[Δ]], 𝑆1)

p2∶∶q2
−−−−−→𝑝2 ⋯

pn∶∶qn
−−−−−→𝑝𝑛 ([[Δ]], 𝑆𝑛) = ([[Δ]], 𝑆′),

with p1, ⋯ , pn, q1, ⋯ , qn all distinct participants, and 𝑝1𝑝2 ⋯𝑝𝑛 = 𝑝.

Lemma 3.4.12. ([[Δ]], 𝑆1) ⊂∼𝑝 ([[Δ]], 𝑆2) iff ∃𝑆′2 ⋅ ([[Δ
′]], 𝑆2)

(_∶∶_)∗
−−−−−−→𝑝 ([[Δ′]], 𝑆′2) ∼ ([[Δ]], 𝑆1).

Proof. The backwards direction is immediate from the definition of ⊂∼.

For the forwards direction, we examine the definition of (| ⋅ |). Intuitively, if a participant has

already made a partial transition, they can’t make another one.

This is a useful characterisation since transitions with disjoint participants commute.

Lemma 3.4.13. Let p, q, r, s be distinct participants. Furthermore, let actions 𝛼1 = p ∶∶ q or

p ∶∶ q ∶∶ ℓ1, and 𝛼2 = r ∶∶ s or r ∶∶ s ∶∶ ℓ2. If ([[Δ]], 𝑆)
𝛼1
−−→𝑝 ([[Δ]], 𝑆1)

𝛼2
−−→𝑝′ ([[Δ]], 𝑆′), then

∃𝑆2 ⋅ ([[Δ]], 𝑆)
𝛼2
−−→𝑝′ ([[Δ]], 𝑆2)

𝛼1
−−→𝑝 ([[Δ]], 𝑆′).

Proof. We show that variables used in the guards and updates of each transition are independent.
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We use this property to generalise Lemma 3.4.11 to the full completeness result.

Lemma 3.4.14. Suppose ([[Δ]], 𝑆) ⊂∼𝑝1
[[Δ′]] and ([[Δ]], 𝑆)

𝛼
−→𝑝2 ([[Δ]], 𝑆

′). Then ∃Δ″ ⋅ Δ′ −→∗
𝑝3 Δ

″

and ([[Δ]], 𝑆′) ⊂∼𝑝4
[[Δ″]], with 𝑝1𝑝2 = 𝑝3𝑝4.

Proof. By Lemma 3.4.12,

∃𝑇 ⋅ [[Δ′]]
(_∶∶_)∗
−−−−−−→𝑝1 ([[Δ

′]], 𝑇 ) ∼ ([[Δ]], 𝑆), (3.1)

and by bisimilarity,

∃𝑇 ′ ⋅ ([[Δ′]], 𝑇 )
𝛼
−→𝑝2 ([[Δ

′]], 𝑇 ′) ∼ ([[Δ′]], 𝑆′). (3.2)

We consider the two possible cases of 𝛼.

Case 𝛼 = p ∶∶ q Then

[[Δ′]]
(_∶∶_)∗
−−−−−−→𝑝1𝑝2 ([[Δ

′]], 𝑇 ′) ∼ ([[Δ]], 𝑆),

so setting Δ″ = Δ′ (and therefore 𝑝3 = 1), indeed ([[Δ]], 𝑆′) ⊂∼𝑝1𝑝2
[[Δ′]].

Case 𝛼 = p ∶∶ q ∶∶ ℓ Then 𝑝2 = 1. Since ([[Δ′]], 𝑇 )
p∶∶q∶∶ℓ
−−−−−−→, there must’ve been a

p∶∶q
−−−−→ within

[[Δ′]]
(_∶∶_)∗
−−−−−−→𝑝1 ([[Δ

′]], 𝑇 ). Hence, we apply Lemma 3.4.13 to (3.1) and (3.2) so that

∃𝑈 , 𝑈 ′ ⋅ [[Δ′]]
p∶∶q
−−−−→𝑝3 ([[Δ

′]], 𝑈 )
p∶∶q∶∶ℓ
−−−−−−→1 ([[Δ′]], 𝑈 ′)

(_∶∶_)∗
−−−−−−→𝑝1/𝑝3 ([[Δ

′]], 𝑇 ′). (3.3)

Applying Lemma 3.4.11 to (3.3), ∃Δ″ ⋅ Δ′ −→𝑝3 Δ
″ and ([[Δ′]], 𝑈 ′) ∼ [[Δ″]]. By bisimilarity,

∃𝑉 ⋅ [[Δ″]]
(_∶∶_)∗
−−−−−−→𝑝1/𝑝3 ([[Δ

″]], 𝑉 ) ∼ ([[Δ′]], 𝑇 ′).

Recalling ([[Δ′]], 𝑇 ′) ∼ ([[Δ′]], 𝑆′), we have

([[Δ′]], 𝑆) ⊂∼𝑝1/𝑝3
[[Δ″]],

with 𝑝1 ⋅ 1 = 𝑝3 ⋅
𝑝1
𝑝3
, as required.

Theorem 3.4.15 (Completeness). For every context Δ, state 𝑆 and probability 𝑝 with [[Δ]] −→∗
𝑝

([[Δ]], 𝑆), there exists Δ′ such that Δ −→∗
𝑝′ Δ

′ and ([[Δ]], 𝑆) ⊂∼𝑝″ [[Δ′]], with 𝑝 = 𝑝′𝑝″.
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Proof. For some 𝑛 ≥ 0 and states 𝑆1, ⋯ , 𝑆𝑛,

[[Δ]]
𝛼1
−−→𝑝1 ([[Δ]], 𝑆1)

𝛼2
−−→𝑝2 …

𝛼𝑛
−−→𝑝𝑛 ([[Δ]], 𝑆𝑛) = ([[Δ]], 𝑆),

with 𝑝1𝑝2 ⋯𝑝𝑛 = 𝑝. We proceed by induction on 𝑛.

Case 𝑛 = 0 Then ([[Δ]], 𝑆) = [[Δ]] and 𝑝 = 1. We pick Δ′ = Δ (and therefore 𝑝′ = 1), and indeed

[[Δ]] ⊂∼1 [[Δ]].

Case 𝑛 = 𝑘 + 1 By the induction hypothesis, ∃Δ′ ⋅ Δ −→∗
𝑝′ Δ′ and ([[Δ]], 𝑆𝑛) ⊂∼𝑝″ [[Δ′]], with

𝑝′𝑝″ = 𝑝1 ⋯𝑝𝑘. Since ([[Δ]], 𝑆𝑛)
𝛼𝑘+1
−−−→𝑝𝑘+1 ([[Δ]], 𝑆), by Lemma 3.4.14, ∃Δ″ ⋅ Δ′ −→∗

𝑞 Δ″ and

([[Δ]], 𝑆) ⊂∼𝑞′ [[Δ″]], with 𝑝″𝑝𝑘+1 = 𝑞𝑞′. Hence Δ −→∗
𝑝′𝑞 Δ″, and (𝑝′𝑞)𝑞′ = 𝑝′𝑝″𝑝𝑘+1 = 𝑝, as

required.

3.5 Property checking

With the encoding in place, we must now write desirable properties as logical formulae.

3.5.1 A brief introduction to PCTL*

We first present the relevant fragment of PCTL*, an extension of PCTL (probabilistic computation

tree logic). Due to space constraints, we opt for a brief presentation; a more principled discussion

can be found in [Baier, 1998].

Definition 3.5.1. The syntax of our fragment of PCTL* is given by

Φ ∶∶= Pmin (𝜑) (probability)

𝜑, 𝜓 ∶∶= 𝑎 (atomic proposition)

| ¬𝜑 | 𝜑 ∧ 𝜓 | 𝜑 ∨ 𝜓 (negation, conjunction, disjunction)

| � 𝜑 (always)

| � 𝜑 (eventually)

We write 𝜑 ⟹ 𝜓 as a shorthand for ¬𝜑 ∨ 𝜓.
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Definition 3.5.2. A path 𝜋 of a PRISM module 𝑀 is a (potentially infinite) sequence of states

𝑆1; 𝑆2; ⋯ such that ∀𝑖 ∈ [1, |𝜋 |) ⋅ (𝑀, 𝑆𝑖) −→ (𝑀, 𝑆𝑖+1).

We call 𝜑 a path formula. Path formulae act on paths 𝜋 of a module 𝑀, and we write 𝜋 ⊧ 𝜑 if 𝜋

satisfies 𝜑. Given a model 𝑀, Pmin (𝜑) tells us the probability2 of obtaining a path 𝜋 = ∅; 𝑆2; ⋯

starting from ∅ such that 𝜋 ⊧ 𝜑.

Definition 3.5.3. Let 𝜋 = 𝑆1; 𝑆2; ⋯ be a path, and denote 𝜋[𝑖..] to be the subpath 𝑆𝑖; 𝑆𝑖+1; ⋯.

The semantics of a path formula 𝜑 is given inductively:

𝜋 ⊧ 𝑎 ⟺ 𝑆1 ⊢ 𝑎

𝜋 ⊧ ¬𝜑 ⟺ 𝜋 ̸⊧ 𝜑

𝜋 ⊧ 𝜑 ∧ 𝜓 ⟺ 𝜋 ⊧ 𝜑 ∧ 𝜋 ⊧ 𝜓

𝜋 ⊧ 𝜑 ∨ 𝜓 ⟺ 𝜋 ⊧ 𝜑 ∨ 𝜋 ⊧ 𝜓

𝜋 ⊧ � 𝜑 ⟺ ∀𝑖 ⋅ 𝜋[𝑖..] ⊧ 𝜑

𝜋 ⊧ � 𝜑 ⟺ ∃𝑖 ⋅ 𝜋[𝑖..] ⊧ 𝜑

3.5.2 Defining specifications

We define several PRISM labels – boolean expressions over variables – to act as atomic propo-

sitions. For conciseness, we only give informal meanings here, though it is straightforward to

express them as conjunctions or disjunctions of state variables.

Definition 3.5.4. Given an encoding [[Δ]], we define the following labels (their names denoted

with “quotes”):

• 𝑆 ⊢ “end” ⟺ ∀p ∈ dom(Δ) ⋅ 𝑆(𝑆p) = 𝑆𝑆(Δ(p))

• ∀p ∶∶ q ∶∶ ℓ ∈ actionsΔ(p) ∪ actionsΔ(q) ⋅

𝑆 ⊢ “send ∶∶ p ∶∶ q ∶∶ ℓ” ⟺ ((|Δ(p)|), 𝑆)
p∶∶q∶∶ℓ
−−−−−−→

• ∀p, q ∈ dom(Δ) ⋅ 𝑆 ⊢ “receive ∶∶ p ∶∶ q” ⟺ ∃ℓ ⋅ ((|Δ(q)|), 𝑆)
p∶∶q∶∶ℓ
−−−−−−→

2More precisely, this gives the minimum probability across all realisations of nondeterminism. In our case, how-
ever, all probabilities are equal thanks to confluence.
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• ∀p ∶∶ q ∶∶ ℓ ∈ actionsΔ(p) ∪ actionsΔ(q) ⋅

𝑆 ⊢ “receive ∶∶ p ∶∶ q ∶∶ ℓ ” ⟺ ((|Δ(q)|), 𝑆)
p∶∶q∶∶ℓ
−−−−−−→

Moreover, PRISM has an inbuilt label “deadlock” such that 𝑆 ⊢ “deadlock” ⟺ ([[Δ]], 𝑆) ↛.

Using the labels, we write the following property specifications:

safe(Δ) ⟺ Pmin(� ( ⋀
p∶∶q∶∶ℓ∈actions(Δ)

(“send ∶∶ p ∶∶ q ∶∶ ℓ” ∧ “receive ∶∶ p ∶∶ q”)

⟹ “receive ∶∶ p ∶∶ q ∶∶ ℓ”)) = 1

ℙDF(Δ) = Pmin (� (“deadlock” ⟹ “end” ))

ℙTerm(Δ) = Pmin ( � “end” )

In a safe context, if p can send ℓ to q and q is ready to receive from p, then q must accept ℓ. The

probability of deadlock freedom is the probability of obtaining a path where no reductions are

possible only when all participants are in the end state. Finally, the probability of termination is

the probability of obtaining a path where all participants eventually enter the end state.



Chapter 4

Implementation

With the theoretical foundations in place, we now turn our attention to implementation. In this

chapter, we present Prose, a tool for the verification of probabilistic session types. Prose is

implemented in OCaml , following the compilation pipeline illustrated in Figure 4.1. We start

with an input context, which is converted into an abstract syntax tree (AST) by the lexing and

parsing stages (Section 4.1). The validation stage (Section 4.2) checks that the AST is well-formed,

after which the translation stage (Section 4.3) produces abstract representations of the translated

PRISMmodel and properties. Finally, the pretty-printing stage outputs .prism and .pctl files for

verification via PRISM.

4.1 Lexing and parsing

The lexing stage converts the input context file into a sequence of tokens. For example,

p : q (+) l . end

might be converted into

IDENT "p"; COLON; IDENT "q"; OPLUS; IDENT "l"; DOT; END.

The full set of tokens and their regular expressions are given in Figure 4.2. We then invoke

ocamllex1 on these rules.

The parsing stage converts the stream of tokens produced by the lexer into an AST. To do this, we

1https://ocaml.org/manual/5.3/lexyacc.html

37
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.ctx file

Ast.context

Prism.model

.prism file

Psl.annotated_property list

.pctl file

lexer.mll

parser.mly

Well_formed.check_context

Translate.translate Translate.translate

Printer.print_model Printer.print_properties

Figure 4.1: An overview of the Prose compilation pipeline.

Token Regular expression
IDENT (a-z | A-Z | _) (a-z | A-Z | 0-9 | _)*

PROB 0 | 1 | 1.0 | 0.(0-9)*

COLON :

DOT .

COMMA ,

END end

MU mu

OPLUS (+)

AND &

LBRACE {

RBRACE }

LPAREN (

RPAREN )

INT Int

BOOL Bool

UNIT Unit

Figure 4.2: Lexer tokens and their corresponding regular expressions.



CHAPTER 4. IMPLEMENTATION 39

⟨context⟩ ∶∶= ∅ | ⟨context-item⟩ ⟨context⟩
⟨context-item⟩ ∶∶= IDENT ∶ ⟨session-type⟩
⟨session-type⟩ ∶∶= end | IDENT

| mu IDENT . ⟨session-type⟩
| IDENT (+) ⟨int-choices⟩
| IDENT & ⟨ext-choices⟩

⟨int-choices⟩ ∶∶= ⟨choice⟩ | { ⟨prob-choices⟩ }
⟨ext-choices⟩ ∶∶= ⟨choice⟩ | { ⟨choices-list⟩ }

⟨choice⟩ ∶∶= IDENT . ⟨session-type⟩
| IDENT ( ⟨basic-type⟩ ) . ⟨session-type⟩

⟨choices⟩ ∶∶= ⟨choice⟩ | ⟨choice⟩ , ⟨choices⟩
⟨prob-choice⟩ ∶∶= PROB ∶ ⟨choice⟩
⟨prob-choices⟩ ∶∶= ⟨prob-choice⟩ | ⟨prob-choice⟩ , ⟨prob-choices⟩
⟨basic-type⟩ ∶∶= Int | Bool | Unit

Figure 4.3: Context-free grammar for machine-readable typing contexts. For clarity, we present
all tokens except IDENT and PROB in their expanded form.

first write down the syntax of session type contexts as a context-free grammar (CFG). The rules

are given in Figure 4.3 – note this largelymirrors themathematical syntax of session types.

Example 4.1.1. The context

p ∶ 𝜇t.q⊕{
0.3 ∶ ℓ1.end
0.7 ∶ ℓ2.t

q ∶ 𝜇t.p&{
ℓ1.end
ℓ2.t

can be written in our machine-readable format as

p : mu t . q (+) {

0.3 : l1 . end,

0.7 : l2 . t

}

q : mu t . p & {

l1 . end,

l2 . t

}

We augment each production rule in the CFG with rules on how to construct the abstract syntax
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context

context_item

p Mu

t Internal

q prob_choices

prob_choice

0.3 choice

ℓ1 End

prob_choice

0.3 choice

ℓ2 Variable

t

context_item

q Mu

t External

p choices

choice

ℓ1 End

choice

ℓ2 Variable

t

Figure 4.4: Abstract syntax tree for Example 4.1.1.

tree (AST), then invoke the Menhir parser generator.2

Example 4.1.2. The parsing rule for ⟨session-type⟩ is

session_type:

| END

{ End }

| var = IDENT

{ Variable var }

| MU var = IDENT DOT cont = session_type

{ Mu (var, cont) }

| int_part = IDENT OPLUS int_choices = int_choices

{ Internal { int_part; int_choices } }

| ext_part = IDENT AND ext_choices = ext_choices

{ External { ext_part; ext_choices } }

For example, the second rule states that the sequence MU; IDENT; DOT; <session-type> pro-

duces a Mu node.

2https://gallium.inria.fr/~fpottier/menhir/

https://gallium.inria.fr/~fpottier/menhir/
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type model =

{ globals : var_type list

; modules : pmodule list

; labels : label list

}

[ @@deriving sexp_of]

and pmodule =

{ locals : var_type list

; participant : string

; commands : command list

}

and command =

{ action : Action.t

; guard : bool expr

; updates :

(float * update list) list

}

and label =

{ name : label_name

; expr : bool expr

}

and _ expr =

| IntConst : int -> int expr

| BoolConst : bool -> bool expr

| Var : 'a variable -> 'a expr

| Eq : 'a expr * 'a expr -> bool expr

| And : bool expr * bool expr -> bool expr

| Or : bool expr * bool expr -> bool expr

and _ variable =

| StringVar : string -> 'a variable

and update =

| IntUpdate of int variable * int expr

| BoolUpdate of bool variable * bool expr

Figure 4.5: An excerpt from prism.ml.

Example 4.1.3. The AST for the context in Example 4.1.1 is given in Figure 4.4.

4.2 Validation

The validation stage checks that certain invariants hold in the typing context. Namely:

• all variables are bound;

• each probability 𝑝𝑖 ∈ [0, 1];

• internal choices have ∑𝑖∈𝐼 𝑝𝑖 = 1.

If any of these are violated, Prose displays an error.

4.3 Translation

The translation stage implements the procedure from Chapter 3. We adopt several optimisations:

for instance, we use sets andmaps based on binary search trees (fromBase3) to track variables and

actions efficiently. This stage produces ASTs for the PRISM model and property specifications,

with its structure defined by a mutually recursive type shown in Figure 4.5.

3https://opensource.janestreet.com/base/

https://opensource.janestreet.com/base/
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Table 4.1: Available flags for prose verify

Flag Description
-print-ast Print internal AST representation for debugging
-raw-prism Print raw PRISM CLI output for debugging
-translation-time Print time taken for translation of context into PRISM

4.4 Using Prose

To verify typing contexts, users can pass a context file to the verify mode.

$ prose verify examples/prob-deadlock.ctx

Type safety

Result: true

Probabilistic deadlock freedom

Result: 0.30000000000000004 (exact floating point)

Probabilistic termination

Result: 1.0 (exact floating point)

A number of debugging flags are available, as listed in Table 4.1.

To display the PRISM model and property files, we use the output mode.

$ prose output examples/prob-deadlock.ctx

global fail : bool init false;

module closure

closure : bool init false;

endmodule

module commander

commander : [0..4] init 0;

commander_a_label : [0..2] init 0;

...

// Probabilistic deadlock freedom

Pmin=? [ (G ("deadlock" => "end")) ]

// Probabilistic termination

Pmin=? [ (F ("end") ]
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Table 4.2: Available flags for prose output

Flag Description
-o string Write PRISM model output to filename (default: print to stdout)
-p string Write PRISM property output to filename (default: print to stdout)
-print-ast Print internal AST representation for debugging
-translation-time Print time taken for translation of context into PRISM

We can use the flags in Table 4.2 to instead save the output as files.



Chapter 5

Evaluation

In this chapter, we evaluate the effectiveness of Prose in various scenarios. We first verify prop-

erties of interesting typing contexts. Then, we run a comprehensive suite of performance bench-

marks to measure Prose’s efficiency.

5.1 Case studies

5.1.1 Recursive map-reduce

A recursive map-reduce protocol (extended from [Scalas and Yoshida, 2019]) is described by the

following context:

mapper ∶ 𝜇t.worker1⊕datum⟨int⟩.
worker2⊕datum⟨int⟩.
worker3⊕datum⟨int⟩.

reducer&

⎧{{
⎨{{⎩

continue(int).t
stop.worker1⊕stop.

worker2⊕stop.
worker3⊕stop.end

reducer ∶ 𝜇t.worker1&result(int).
worker2&result(int).
worker3&result(int).

mapper⊕{
0.4 ∶ continue⟨int⟩.t
0.6 ∶ stop.end

∀𝑖 ∈ {1, 2, 3} ⋅ workeri ∶ mapper&datum(int).
𝜇t.reducer⊕result⟨int⟩.

mapper&{
datum(int).t
stop.end

44
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mapper

worker1 worker2 worker3

reducer

datum
datum datum

result
result result

continue mapper

worker1 worker2 worker3

reducer

stop
stop

stop

stop

Figure 5.1: Illustration of the recursive map-reduce protocol, while the system is continuing
(left) and stopping (right).

An illustration is given in Figure 5.1. The mapper sends datum to three workers, which each

return a result to the reducer. The reducer then either continues (w.p. 0.4) or stops (w.p. 0.6).

If continuing, themapper distributes more tasks; otherwise, it signals theworkers to stop.

Using Prose, we can determine that this protocol is safe, deadlock-free and terminating (the

latter two almost surely).

$ prose verify examples/rec-map-reduce.ctx

Type safety

Result: true

Probabilistic deadlock freedom

Result: 1.0 (exact floating point)

Probabilistic termination

Result: 1.0 (exact floating point)

5.1.2 Knuth-Yao dice

Taking inspiration from a PRISM case study1, we consider a dice program due to [Knuth and Yao,

1976], illustrated in Figure 5.2. It describes a Markov chain modelling a six-sided die using only

coin flips.

The corresponding context is given in Figure 5.3. We model each node 𝑥 with two participants

px and qx to receive from and send to different participants in a single ⊕ or &. The 𝑖-th face of

the die is represented by the participant di. If outcome 1 is chosen, d1 sends repeat to dummy

1https://www.prismmodelchecker.org/casestudies/dice.php

https://www.prismmodelchecker.org/casestudies/dice.php
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a

b

c

d

e

f

g

1

2

3

4

5

6

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 5.2: Illustration of the Knuth-Yao dice program.

pa ∶ qa⊕{
0.5 ∶ a.end
0.5 ∶ b.end

qa ∶ pa&{
a.𝜇t.pb⊕go.qd&redo.t
b.𝜇t.pc⊕go.qg&redo.t

pb ∶ 𝜇t.qa&go.qb⊕{
0.5 ∶ d.t
0.5 ∶ e.t

qb ∶ 𝜇t.pb&{
d.pd⊕go.t
e.pe⊕go.t

pc ∶ 𝜇t.qa&go.qc⊕{
0.5 ∶ f.t
0.5 ∶ g.t

qc ∶ 𝜇t.pc&{
f.pf⊕go.t
g.pg⊕go.t

pd ∶ 𝜇t.qb&go.qd⊕{
0.5 ∶ b.t
0.5 ∶ one.end

qd ∶ 𝜇t.pd&{
b.qa⊕redo.t
one.d1⊕done.end

pe ∶ qb&go.qe⊕{
0.5 ∶ two.end
0.5 ∶ three.end

qe ∶ pe&{
two.d2⊕done.end
three.d3⊕done.end

pf ∶ qc&go.qf⊕{
0.5 ∶ four.end
0.5 ∶ five.end

qf ∶ pf&{
four.d4⊕done.end
five.d5⊕done.end

pg ∶ 𝜇t.qc&go.qg⊕{
0.5 ∶ c.t
0.5 ∶ six.end

qg ∶ 𝜇t.pg&{
c.qa⊕redo.t
six.d6⊕done.end

d1 ∶ qd&done.𝜇t.dummy⊕repeat.t d2 ∶ qe&done.end d3 ∶ qe&done.end

d4 ∶ qf&done.end d5 ∶ qf&done.end d6 ∶ qg&done.end

dummy ∶ 𝜇t.d1&repeat.t

Figure 5.3: Typing context for Knuth-Yao dice.
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forever; otherwise, dummy waits for d1 indefinitely, so the context is deadlocked.

The probability of deadlock freedom therefore equals the probability of obtaining outcome 1.

$ prose verify examples/dice.ctx

...

Probabilistic deadlock freedom

Result: 0.16666698455810547 (+/- 1.1920963061161968E-6 estimated;

rel err 7.1525641942636435E-6)

...

As expected, outcome 1 has probability 1
6 . We can rearrange di to verify that other outcomes

have probability 1
6 too.

5.1.3 Monty Hall problem

TheMonty Hall problem [Dickey et al., 1975] is a well-known probabilistic paradox. We consider

two contexts

Δstay = car ∶ Tcar, host ∶ Thost, player ∶ Tstay

Δchange = car ∶ Tcar, host ∶ Thost, player ∶ Tleave,

where

Tcar = host⊕
⎧{
⎨{⎩

1
3 ∶ ℓ1.end
1
3 ∶ ℓ2.end
1
3 ∶ ℓ3.end,

Thost = car&

⎧
{{
⎨
{{
⎩

ℓ1.player⊕{
0.5 ∶ ℓ2.player&ℓ1.end
0.5 ∶ ℓ3.player&ℓ1.end

ℓ2.player⊕ℓ3.player&ℓ2.end
ℓ3.player⊕ℓ2.player&ℓ3.end,

Tstay = host&{
ℓ2.host⊕ℓ1.end
ℓ3.host⊕ℓ1.end,

Tchange = host&{
ℓ2.host⊕ℓ3.end
ℓ3.host⊕ℓ2.end.

The player is on a game show with a choice of three doors, with one hiding a car. They initially

pick door 1. The host then opens another door without the car and informs the player, who must

then decide whether to stick with door 1 or switch to the remaining unopened door. Is switching

advantageous? Intuitively, it might seem not.

In Δstay, the player keeps door 1; in Δchange, they switch. Both contexts terminate iff the correct

door is chosen. Running Prose on the both gives:

$ prose verify examples/monty-hall-stay.ctx
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Table 5.1: Benchmark results for Prose.

Typing context Translation (ms) Safety (s) PDF (s) PTerm (s) End-to-end (s)
auth 0.237 ± 0.002 0.338 ± 0.004 0.331 ± 0.001 0.328 ± 0.001 0.339 ± 0.002
dice 0.293 ± 0.008 0.386 ± 0.001 0.414 ± 0.001 0.387 ± 0.002 0.448 ± 0.001
different-sort 0.104 ± 0.008 0.330 ± 0.001 0.328 ± 0.001 0.327 ± 0.001 0.330 ± 0.002
monty-hall-change 0.163 ± 0.008 0.327 ± 0.001 0.327 ± 0.001 0.333 ± 0.001 0.337 ± 0.001
monty-hall-stay 0.163 ± 0.008 0.330 ± 0.001 0.334 ± 0.002 0.329 ± 0.001 0.341 ± 0.002
more-choices 0.107 ± 0.008 0.328 ± 0.001 0.328 ± 0.001 0.328 ± 0.001 0.332 ± 0.002
multiparty-workers 0.219 ± 0.008 0.394 ± 0.006 0.434 ± 0.002 0.375 ± 0.001 0.515 ± 0.003
non-terminating 0.118 ± 0.009 0.331 ± 0.002 0.332 ± 0.001 0.329 ± 0.001 0.333 ± 0.001
open 0.121 ± 0.008 0.329 ± 0.001 0.328 ± 0.001 0.338 ± 0.002 0.335 ± 0.001
prob-deadlock 0.123 ± 0.009 0.334 ± 0.001 0.341 ± 0.003 0.329 ± 0.001 0.338 ± 0.001
rec-map-reduce 0.172 ± 0.008 0.335 ± 0.001 0.331 ± 0.001 0.334 ± 0.001 0.345 ± 0.001
rec-two-buyers 0.146 ± 0.008 0.327 ± 0.001 0.341 ± 0.003 0.339 ± 0.002 0.336 ± 0.001
same-labels 0.140 ± 0.008 0.331 ± 0.001 0.337 ± 0.001 0.344 ± 0.001 0.337 ± 0.002
simple 0.108 ± 0.008 0.331 ± 0.001 0.333 ± 0.001 0.332 ± 0.001 0.333 ± 0.001
sync-alone 0.132 ± 0.008 0.337 ± 0.001 0.339 ± 0.001 0.339 ± 0.002 0.334 ± 0.001
translation-example 0.126 ± 0.008 0.332 ± 0.001 0.333 ± 0.001 0.332 ± 0.002 0.336 ± 0.001
unsafe 0.130 ± 0.008 0.333 ± 0.001 0.328 ± 0.002 0.333 ± 0.002 0.337 ± 0.001
unsafe-2 0.123 ± 0.008 0.332 ± 0.002 0.334 ± 0.001 0.332 ± 0.001 0.340 ± 0.001

...

Probabilistic termination

Result: 0.333333 (exact floating point)

$ prose verify examples/monty-hall-change.ctx

...

Probabilistic termination

Result: 0.666667 (exact floating point)

So in fact switching doubles the player’s chance of winning the car!

5.2 Performance

We now evaluate the efficiency of Prose through benchmarks. The experiments were run on a

laptop with an Apple M1 Pro processor and 32GB of RAM, with OCaml 5.1.1 and PRISM v4.8.1.

We run each measurement 30 times and report their mean and standard error. For each context,

we record the translation time, time for invoking PRISM on each property separately, and the

overall end-to-end runtime.

The results are presented in Table 5.1, and all context files are provided in Appendix A. We find

that all contexts are verified in well under a second, demonstrating that Prose is suitable for

practical use. Notably, translation cost is negligible (<0.3ms), making PRISM model checking the
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dominating cost.

Interestingly, end-to-end runtimes are similar to those for checking individual properties, as

PRISM internal model construction introduces a significant cost. Since the model is built once

per PRISM invocation, this cost is reflected in all single-property runtimes but only once in the

end-to-end runtime.



Chapter 6

Conclusion

In this project, we have introduced a new method for verifying probabilistic distributed proto-

cols. We extended bottom-up multiparty session types with probabilities (Chapter 2), developed

an encoding into PRISM (Chapter 3), and proved its correctness. We then implemented the ver-

ification procedure in Prose (Chapter 4) and demonstrated its practicality through case studies

and performance benchmarks (Chapter 5).

This project lays the groundwork for many extensions. We are currently extending our type

system to support sub-probabilities, where internal choices have probabilities summing to less

than one. These types represent underspecified protocols, enabling the verification of processes

with incomplete behaviour. Experimental support for this extension is already implemented in

Prose. We also plan to extend Prose to verify additional properties such as probabilistic liveness,

and use Prose to verify larger-scale protocols such as those used in the distributed training of

machine learning models.

50
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Appendix A

Typing context examples

auth.ctx

(* Note: this context uses sub -probabilities as discussed briefly in the conclusion *)

s : b & {

connect . c (+) {

0.1 : login . a & authorise . end ,

0.3 : cancel . e (+) terminate . end

},

networkerror . mu t . b & retry . t

}

c : s & {

login . a (+) pass . end ,

cancel . a (+) quit . end

}

a : c & {

pass . a (+) authorise . end ,

quit . end

}

b : s (+) {

0.6 : connect . end ,

0.4 : networkerror . mu t . s (+) retry . t

}

dice.ctx

(* Knuth & Yao 's Dice Program. Refer to

https ://www.prismmodelchecker.org/casestudies/dice.php

We represent each vertex i with two processes (pi , qi), which allows us to

simulate internal choice sending to different participants.

*)

p0 : q0 (+) {

54
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0.5 : l1 . end ,

0.5 : l2 . end

}

q0 : p0 & {

l1 . mu t .

p1 (+) go . q3 & redo . t,

l2 . mu t .

p2 (+) go . q6 & redo . t

}

p1 : mu t .

q0 & go .

q1 (+) {

0.5 : l3 . t,

0.5 : l4 . t

}

q1 : mu t.

p1 & {

l3 . p3 (+) go . t,

l4 . p4 (+) go . t

}

p2 : mu t.

q0 & go .

q2 (+) {

0.5 : l5 . t,

0.5 : l6 . t

}

q2 : mu t .

p2 & {

l5 . p5 (+) go . t,

l6 . p6 (+) go . t

}

p3 : mu t .

q1 & go .

q3 (+) {

0.5 : l1 . t,

0.5 : d1 . end

}

q3 : mu t .

p3 & {

l1 . q0 (+) redo . t,

d1 . dice1 (+) done . end

}

p4 : q1 & go .

q4 (+) {

0.5 : d2 . end ,

0.5 : d3 . end

}

q4 : p4 & {

d2 . dice2 (+) done . end ,

d3 . dice3 (+) done . end

}
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p5 : q2 & go .

q5 (+) {

0.5 : d4 . end ,

0.5 : d5 . end

}

q5 : p5 & {

d4 . dice4 (+) done . end ,

d5 . dice5 (+) done . end

}

p6 : mu t .

q2 & go .

q6 (+) {

0.5 : d6 . end ,

0.5 : l2 . end

}

q6 : mu t .

p6 & {

d6 . dice6 (+) done . end ,

l2 . q0 (+) redo . t

}

(* Each of these should be of 1/6 probability *)

dice1 : q3 & done . mu t . dummy (+) repeat . t

dice2 : q4 & done . end

dice3 : q4 & done . end

dice4 : q5 & done . end

dice5 : q5 & done . end

dice6 : q6 & done . end

dummy : mu t . dice1 & repeat . t

different-sort.ctx

(* What happens if two participants try to communicate on the same label but

different sorts (basic types)? *)

p : q (+) l(Int) . end

q : p & l(Bool) . end

monty-hall-change.ctx

(* Monty Hall problem. In this variant , the contestant always switches doors

to either 2 or 3, depending on whichever door the host opens.

The probability of deadlock freedom corresponds with the probability of

picking the door with the car.

Compare with [monty -hall -stay.ctx]. *)

car : host (+) {

0.333333 : l1 . end ,

0.333333 : l2 . end ,

0.333334 : l3 . end
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}

host : car & {

l1 . player (+) {

0.5 : l2 . player & l1 . end ,

0.5 : l3 . player & l1 . end

},

l2 . player (+) l3 . player & l2 . end ,

l3 . player (+) l2 . player & l3 . end

}

player : host & {

l2 . host (+) l3 . end ,

l3 . host (+) l2 . end

}

monty-hall-stay.ctx

(* Monty Hall problem. In this variant , the contestant always picks Door 1.

The probability of deadlock freedom corresponds with the probability of

picking the door with the car.

Compare with [monty -hall -change.ctx]. *)

car : host (+) {

0.333333 : l1 . end ,

0.333333 : l2 . end ,

0.333334 : l3 . end

}

host : car & {

l1 . player (+) {

0.5 : l2 . player & l1 . end ,

0.5 : l3 . player & l1 . end

},

l2 . player (+) l3 . player & l2 . end ,

l3 . player (+) l2 . player & l3 . end

}

player : host & {

l2 . host (+) l1 . end ,

l3 . host (+) l1 . end

}

more-choices.ctx

p : q (+) l1 . end

q : mu t . p & {

l1 . end ,

l2 . t

}

multiparty-workers.ctx

starter : workerA1 (+) datum(Int) .
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workerA2 (+) datum(Int) .

workerA3 (+) datum(Int) .

end

workerA1 : starter & datum(Int) .

mu t .

workerB1 (+) {

0.5 : datum(Int) . workerC1 & result(Int) . t,

0.5 : stop . end

}

workerB1 : mu t .

workerA1 & {

datum(Int) . workerC1 (+) datum(Int) . t,

stop . workerC1 (+) stop . end

}

workerC1 : mu t .

workerB1 & {

datum(Int) . workerA1 (+) result . t,

stop . end

}

workerA2 : starter & datum(Int) .

mu t .

workerB2 (+) {

0.5 : datum(Int) . workerC2 & result(Int) . t,

0.5 : stop . end

}

workerB2 : mu t .

workerA2 & {

datum(Int) . workerC2 (+) datum(Int) . t,

stop . workerC2 (+) stop . end

}

workerC2 : mu t .

workerB2 & {

datum(Int) . workerA2 (+) result . t,

stop . end

}

workerA3 : starter & datum(Int) .

mu t .

workerB3 (+) {

0.5 : datum(Int) . workerC3 & result(Int) . t,

0.5 : stop . end

}

workerB3 : mu t .

workerA3 & {

datum(Int) . workerC3 (+) datum(Int) . t,

stop . workerC3 (+) stop . end

}

workerC3 : mu t .

workerB3 & {

datum(Int) . workerA3 (+) result . t,

stop . end
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}

non-terminating.ctx

a : b (+) {

0.5 : l1 . end ,

0.5 : l2 . mu t . b (+) l2 . t

}

b : mu t .

a & {

l1 . end ,

l2 . t

}

open.ctx

alice : bob (+) { 0.33 : a.end , 0.33 : b . carol (+) c . end , 0.34 : c . end }

bob : alice & { a.end , b.end , c.end }

prob-deadlock.ctx

commander : a (+) {

0.7 : deadlock . end ,

0.3 : nodeadlock . end

}

a : commander & {

deadlock . b & msg . end ,

nodeadlock . b (+) msg . end

}

b : a & msg . end

rec-map-reduce.ctx

mapper : mu t .

worker1 (+) datum(Int) .

worker2 (+) datum(Int) .

worker3 (+) datum(Int) .

reducer & {

continue(Int) . t,

stop .

worker1 (+) stop .

worker2 (+) stop .

worker3 (+) stop .

end

}

worker1 : mapper & datum(Int) .

mu t .

reducer (+) result(Int) .

mapper & {

datum(Int) . t,
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stop . end

}

worker2 : mapper & datum(Int) .

mu t .

reducer (+) result(Int) .

mapper & {

datum(Int) . t,

stop . end

}

worker3 : mapper & datum(Int) .

mu t .

reducer (+) result(Int) .

mapper & {

datum(Int) . t,

stop . end

}

reducer : mu t .

worker1 & result(Int) .

worker2 & result(Int) .

worker3 & result(Int) .

mapper (+) {

0.4 : continue(Int) . t,

0.6 : stop.end

}

rec-two-buyers.ctx

alice: shop (+) query(Str) .

shop&price(Int) .

mu t .

bob (+) {

0.5 : split(Int) . bob & {yes . shop (+) buy . end , no . t},

0.5 : cancel . shop (+) no . end

}

shop: alice&query(Str) . alice (+) price(Int) . alice &{buy.end , no.end}

bob: mu t .

alice & {

split(Int) . alice (+) {0.5 : yes.end , 0.5 : no.t},

cancel . end

}

same-labels.ctx

(* Previous iterations of the translation used ID(-) to work out the next state.

This causes a problem in the following case.

Suppose p::q::l1 is assigned ID 2 and p::q::l2 is assigned ID 1, and the state

after q (+) l2 to be n. Then , the second q (+) l1 will first do an initial

translation to n + 1, then skip by two to n + 3. This will exceed the state

space of p.

This test checks for this case.

*)
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p : q (+) {

0.5 : l1 . end ,

0.5 : l2 . q (+) l1 . end

}

q : p & {

l1 . end ,

l2 . p & l1 . end

}

(* Try the symmetric case for if the ID ordering changes *)

p1 : q1 (+) {

0.5 : l1 . q1 (+) l2 . end ,

0.5 : l2 . end

}

q1 : p1 & {

l1 . p1 & l2 . end ,

l2 . end

}

(* Shuffle the ordering of the two branches *)

q2 : p2 & {

l1 . end ,

l2 . p2 & l1 . end

}

p2 : q2 (+) {

0.5 : l2 . q2 (+) l1 . end ,

0.5 : l1 . end

}

simple.ctx

alice : bob (+) { 0.33 : a.end , 0.67 : b(Int).end }

bob : alice & { a.end , b(Int).end }

sync-alone.ctx

(* What happens if we send to a recipient who does not ever expect to receive? *)

alice : bob (+) {

0.4 : l1 . end ,

0.6 : l2 . end

}

bob : charlie & {

l1 . end ,

l2 . end

}

charlie : bob (+) {
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0.5 : l1 . end ,

0.5 : l2 . end

}

(* What about the other way? *)

a : b & {

l1 . end ,

l2 . end

}

b : c (+) {

0.7 : l1 . end ,

0.3 : l2 . end

}

c : b & {

l1 . end ,

l2 . end

}

translation-example.ctx

(* Translation example from the thesis *)

p : q (+) {

0.2 : l1 . mu t . q (+) l1 . t,

0.3 : l2 . q (+) l2 . end ,

0.5 : l3 . end

}

q : p & {

l1 . mu t. p & l1 . t,

l2 . p & l2 . end ,

l3 . end

}

unsafe.ctx

alice : bob (+) {

0.6 : l1 . end ,

0.3 : l2 .

bob (+) {

0.9 : l3 . end ,

0.1 : l4 . end

},

0.1 : l5 . end

}

bob : alice & {

l1 . end ,

l2 . alice & l3 . end

}

unsafe-2.ctx
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(* Two pairs being unsafe in parallel *)

a : b (+) {

0.4 : l1 . end ,

0.6 : l2 . end

}

b : a & {

l2 . end ,

l3 . end

}

c : d (+) {

0.3 : l1 . end ,

0.7 : l2 . end

}

d : c & {

l2 . end ,

l3 . end

}
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