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Abstract

Multiparty session types (MPST) ensure that distributed systems correctly implement error-free
communication protocols. However, many real-world protocols exhibit probabilistic behaviour,
which MPST cannot capture. To address this, we propose the first probabilistic extension to
bottom-up MPST and implement a verification procedure using the PRISM model checker. We
define a translation from types into PRISM and prove its soundness and completeness with re-
spect to their operational semantics. Moreover, we evaluate the practicality of our implementa-

tion through case studies and measuring its performance across a diverse set of examples.
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Chapter 1

Introduction

Distributed systems are everywhere. They underpin technologies we rely on daily, ranging from
online communication to financial services. As these systems grow in complexity and scale,

ensuring reliable and correct communication becomes increasingly critical.

A prominent approach to verifying such systems is through session types [Honda et al., 1998],
a typing discipline for specifying communication protocols between two message-passing con-
current processes. Multiparty session types (MPST) [Honda et al., 2008] extend this to proto-
cols involving multiple participants. The original top-down MPST framework guarantees dead-
lock freedom, while the newer bottom-up framework [Scalas and Yoshida, 2019] generalises it
to support broader properties. MPST is now a prominent method for formalising and verify-
ing distributed protocols, with implementations in over 16 languages including Rust, Go and

Java [Yoshida, 2024].

However, many real-world distributed protocols are probabilistic in nature. They may utilise
randomised algorithms to improve their efficiency [Aspnes and Herlihy, 1990], or take stochastic
failures into account [Fehnker and Gao, 2006]. The standard MPST framework is insufficient to

capture such probabilistic behaviours.

Several probabilistic extensions to session types have been proposed, but these either target bi-
nary sessions [Inverso et al., 2020, Das et al., 2023] or build off top-down MPST [Aman and
Ciobanu, 2019]. The latter is often too restrictive, as it only types deadlock-free processes — a

condition that may not hold in real-world probabilistic systems. Instead, we aim to explore richer
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properties such as the probability of deadlock freedom.

To address this gap, we present the first probabilistic extension to bottom-up MPST. Our main

contributions are as follows.
» We introduce our type system and formally define their properties (Chapter 2).

« We define a translation from types into the PRISM language and prove its correctness
with respect to their operational semantics (Chapter 3). Notably, the recursive nature of
session types precludes many natural inductive proofs; instead, we define new relations

and functions that enable coinductive proofs.

« We present Prose!, a tool implemented in OCaml which verifies probabilistic protocols

using our theoretical contributions (Chapter 4).

« We demonstrate that our approach is both practical and performant through a wide range

of case studies and performance benchmarks (Chapter 5).

thttps://github.com/smjleo/prose


https://github.com/smjleo/prose

Chapter 2

A type system

In this chapter, we introduce a type system for probabilistic concurrent message-passing pro-
grams. To do this, we briefly touch on a formal notion of such programs by presenting a process
calculus. Next, we define a type system, capturing a certain abstract communication protocol
that these programs must follow. Finally, we argue that the type system, as presented thus far,

is too weak.

We model concurrent processes using a session calculus closely modelling the multiparty session
s-calculus presented in [Scalas and Yoshida, 2019], but extended with probabilities. A formal
definition of the 7-calculus is beyond the scope of this report; instead, we proceed with a small

example.

2.1 A simple session

Example 2.1.1. Suppose alice and bob are two participants in a distributed system. Their

processes are given by

0.4 : inc(41).bobXresult(x).0
Palice = bobH

0.6 : not(true).bobXresult(x).0

inc(x).aliceMresult(x + 1).0
Py, = aliceX

not(x).aliceEresult(—x).0
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Alice Bob
alt [p=0.4]
inc 41 -
_ result42
Tp=06] | T
not true -
_result false

Figure 2.1: lllustration of Example 2.1.1.

With probability 0.4, alice sends (H) inc with payload 41, receives (X) a result from bob, binds it
to x, and terminates (0). With probability 0.6, she sends not with payload true, receives a result,

and terminates.

Meanwhile, bob awaits either message. If he receives inc, he increments the payload, sends the

result, and terminates. If he receives not, he negates the payload, replies, and terminates.

We can construct a session by assigning these processes to alice and bob and composing them:

‘%alice,bob = alice < Palice | bob < Ppob

Running A ,jicc hobs alice obtains x = 42 with probability 0.4, and x = false with probability

0.6.

2.2 Introducing types

The 7-calculus describes how sessions behave; the session type describes how sessions should
behave. At a high level, session types encode communication protocols. Accordingly, they omit

computational details, solely focusing on the messages passed between participants.

Definition 2.2.1. The syntax of probabilistic multiparty session types is given by:

T == p&,;eti(B;).T; (external choice, with [I| > 0)

| P®icrp; : 4i(B;). T/ (internal choice, with |I| > 0, Zidpi =1and p, € [0,1]

| pt.T | t (recursion and recursion variable)
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| end (termination)

B :=int | bool | unit (basic types)

We assume types are closed (i.e. cannot have any unbound variables), unless otherwise stated.

Types with open variables are called partial types, since they may appear as part of a closed

type.

p&;crti(B;).T; denotes external choice: the process waits to receive from participant p one of the
labels ¢; with payload type B;, continuing as T;. The choice of i € I'is made by p, so the process

must be ready for all |I| options.

P®icip; * 4i(B;). T/ represents internal choice: the process selects i € I with probability p;, sends ¢;

with payload B; to p, then continues as T;.

pt.T models recursion, binding T to t. For example, put.p®{1 : £.t} sends ¢ to p forever. Recursion

must be guarded: variables must appear under a choice. Thus, types like pt.t are invalid.

Finally, end represents a terminated process.

Notation 2.2.1. We often omit the unit type and probability 1: p&L.T means p&{€(unit).T},

and p®¢.T means p®{1 : Kunit).T}.

Example 2.2.1. The process P,|;.. from Example 2.1.1 inhabits

0.4 : inc(int).bob&result(int).end

T.jice = bob®
alice {0.6 : not({bool).bob&result(bool).end.
Similarly, P}, inhabits

. inc(int).alice®result(int).end
Tpop = alice& )
not(bool).alice@result(bool).end.

2.3 Typing contexts

We extend the notion of types into typing contexts — mappings from participants to types. This

allows us to reason about the interaction between types.
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[cT-0oUT] [cT-IN]
kel  p.>0 kel
p:q!(By) p:q?8(By)
p i q®ierp; : BTy ————, p : T p ¢ q&erti(B). Ty ————1 p : Ty
[cT-7] . g
o1 q(B) , e [cT-REC] . ’ [cT-sc] .
Ay ——, A Ay ——1 4y p:T{tT/t} —>pp: T A—=pA
(P;Q)f . @ . ’ N @ . ’
Ay Dy —, AL A piutT—pp:T p:TA=,p:T.A

Figure 2.2: Reduction rules for typing contexts.

Definition 2.3.1. The syntax of typing contexts is given by

A:::®|p:T,A

Example 2.3.1. We put Example 2.2.1 into a context:

Alice,bob = alice : Tyjjce> bob : Ty,

Thus we have a typing judgement &= M jice pop = A

alice,bob*

(p.q)t

Typing contexts reduce according to the rules in Figure 2.2. A reduction A —— , A" means that
p sends a message labelled ¢ to q with probability p, evolving context A to A’.

. ) p:qH(B) p:q?(B)
Intermediate reductions —, and ———; (introduced by [cT-ouT] and [cT-IN], respec-

tively) indicate readiness to send or receive. When both sides are ready, [cT-7] performs the

synchronisation.

[cT-rEC] handles recursion by unrolling once, replacing occurrences of t with pt.T using a standard

capture-avoiding substitution. [cT-sc] preserves the types of uninvolved participants.

Example 2.3.2. Figure 2.3 shows the possible reductions of Ajic o}, (Example 2.3.1).

Notation 2.3.1. For notational brevity, we use the following shorthands:

(p.q)t
« A Nif3p,qtp-A——, A

« A ﬁ»p if3A7 - A ip A
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alice : bob&result(int).end,
bob : alice®result(int).end

(alice, bob)inc (alice, bob)result
0.4 1
alice : Tjices bOb : Tpgp alice : end, bob : end
0.6 1
(alice, bob)not (alice, bob)result

alice : bob&result(bool).end,
bob : alice®result(bool).end

Figure 2.3: Reductions of Example 2.3.1.

. (p.q)t
. A—>p if3p,q,t-A —p

«c Awifdp-A—,.

2.4 Properties of typing contexts
Consider a typing context
Apaq = alice : bob®¢t;.end, bob : alice&f,.end,

with £; # £,. This seems bad: alice expects to send to bob, and bob expects to receive from alice,

but they disagree on a label. A4 is an unsafe context.

Definition 2.4.1. A typing context A is safe, written safe(A), if:

p:q'¢B) q:p?’(B) (p.q)e
s A——, and A ———— implies A — and

« A— A’ implies safe(A’).

Now consider

Al;ad = alice : bob&t.end, bob : alice&?f.end.

This time, alice and bob are waiting on each other to send a message: A{_, is deadlocked.

Definition 2.4.2. A context A is deadlocked, written deadlock(A), if A + and 3p - A(p) # end.

However, we can also ask a more interesting question: what is the probability that the typing
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context will stay deadlock free? For example, consider

0.8 : good.end ood.end
Appad = alice : bob&® & bob : alice& 4 ©
0.2 : bad.bob&f.end, bad.alice&t.end.

Then we have

(alice,bob)good )
pbad ——.8 alice : end,bob : end

(alice,bob)bad
Apbad =02 Dpag-

Hence App,q is deadlock free with probability 0.8. We make this notion more precise with the
subsequent definitions.
Definition 2.4.3. A path &is a (potentially infinite) sequence of contexts Ay; A,; -+ such that

vie[LE) A Ay

Definition 2.4.4. A path & = Ay; -+ is complete if it is either infinite or Az +. We write Z(A)

for the set of all complete paths starting from A.

Definition 2.4.5. Given a context A and a set S C Z(A), we write P, (S) for the probability of

obtaining a path in S starting from A.

Definition 2.4.6. Given a context A, its probability of deadlock freedom Ppp(A) is given by
Ppr(A) = PA({§ = Ay; -+ € E(A) | [§] = oo v deadlock(Ajg))}).

We say that A is deadlock free with probability Ppg(A).

Lastly, we might want a system to terminate.

Definition 2.4.7. A context A has terminated, written term(A), if vp € dom(A) - A(p) = end.

Definition 2.4.8. Given a context A, its termination probability Pr.,,(A) is given by

Prerm(A) = PA({§ = Ay; -+ € E(A) | [§] < oo nterm(Aig}).
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2.5 Typable + well-behaved (for now)

Well-typed programs cannot “go wrong”.
—Robin Milner, A theory of type polymorphism in programming

This well-known slogan from [Milner, 1978] succinctly captures a (arguably, the) desirable prop-

erty of type systems. Does it hold for ours?

Admittedly, we have so far avoided the discussion of typing rules. However, the naive rules we

might expect prove to be problematic.

Example 2.5.1. We define two sessions with undesirable properties:
1. M,,q = alice < bobmE,.0 | bob < aliceXt,.0
2. M4 = alice abobXt.0 | bob <« aliceXt.0

Then we might expect that = My,,q : Ap,q and = My 4 : A4 (from Section 2.4), but in fact

—safe(Apaq) and Ppp(Ap ) = 0.

This suggests that we have an incomplete picture. We’d prefer typed programs to not deadlock,
and they definitely shouldn’t be unsafe! Following the approach in [Scalas and Yoshida, 2019],

we partially resolve this dilemma through the following typing rule:
safe({p; : Ti}ie) Vi€eI-THP:T,

F'—HPNPi t{pi ¢ Titier
i€l

This rule says contexts assigned in a typing judgment must be safe, so at least .#},,4 is untypable.
Still 4 4 is typable, but perhaps that’s fine: different applications have different thresholds for
“going wrong”. Certain systems may demand termination (P1.,,,(A) = 1), while others may
tolerate a weaker guarantee (say, Ppp(A) > 0.95). This motivates a procedure for verifying

probabilistic properties of typing contexts.



Chapter 3

Probabilistic model checking

In the previous chapter, we argued for the need to verify typing contexts. This chapter explores

one way to do so via probabilistic model checking.

Model checking is a technique for automated formal verification [Baier and Katoen, 2008]. We
first construct a model — an abstract representation of the system under consideration — and
express the desired properties in a formal system of logic. We then use an algorithm to verify

whether the properties hold in the model.

Prior work [Scalas and Yoshida, 2019] employed the modal p-calculus and the MCRL2 model-
checker [Bunte et al., 2019] to verify typing contexts in a non-probabilistic setting. We instead use

PRISM [Kwiatkowska et al., 2011], a probabilistic model checker developed here at Oxford.

3.1 PRISM semantics

To enable a precise discussion, we first formally define the relevant subset of the PRISM language.
We closely follow the PRISM documentation! and [Carbone and Veschetti, 2024], with some

modifications to syntax and a more precise discussion of states.

Definition 3.1.1. The syntax of PRISM models is given by

M, N == {Ci}iEI (module)

‘ M||N (composition)

'https://www.prismmodelchecker.org/doc/

12
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C:=lalg— zielpi Dy (command, with 3, p; = 1 and p; € [0,1])
g8 =(x=v)|-glgng |gve (guard)
wu =(x" =v) | unu’ (update)
v, v t==v0Ov (arithmetic operations, with © € {+,—, x, +})

| x | nez (variable or constant integer)

PRISM models are a composition of modules, each containing commands C;. Each command has
an action o, guard g, and updates u;, each with probability p;. Guards and updates operate on

states throughout the execution of the model.
Definition 3.1.2. A state Sis a mapping {x; — n; };; from variables x; to constants n;. Updates

override mappings: S[(x” =n)] = (S\{x » S(x)}) u {x — n}.

Remark. PRISM distinguishes equality from updates by denoting them as (x = v) and (x” = v),

respectively. In the latter, we update x, not x”’!

For the sake of presentational hygiene, we treat zero-valued variables differently:

| Notation 3.1.1. For all x ¢ dom(S), we treat S(x) = 0.

| Notation 3.1.2. We treat Su {x +— 0} = S.

Hence we succinctly describe the state {x — 42,y — 0} as {x — 42}. Since PRISM initialises

every integer variable to 0, the initial state of any model is @.

Definition 3.1.3. A state Sis a state for model M if every x € dom(S) appears in some guard

or update in M. We call (M, S) a model-state pair.

Notation 3.1.3. We write M as a shorthand for (M, ®).

We now define the semantics of PRISM. Following [Carbone and Veschetti, 2024], we first in-
troduce a relation M ~» C (pronounced “M has command C”) to capture the effects of composi-

tion.
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[M-MODULE]
la]g = X 01+ 4 € {Glier
{Gliecr» lalg = 20

[M-MOVE]

M“’[a]g_’zid)[i:ui V],pj’-,u]f,g-N%[a]g’—>Zj€]p]f :

M||N ~ [alg = X i+ W
[M-sync]
MHNW [(Z]g/\g, _’zi’jpi*P;‘ : ui/\u],'

Figure 3.1: Rules for .

[s-sTEP]
Mw[a]gﬁzielpi:ui Skg
(M. ) =, (M, S[1])

Figure 3.2: Transition rule for PRISM model-state pairs.

14

The rules for ~» are shown in Figure 3.1. [M-mopULE] says a model with one module inherits its

commands. If M has action ¢ and N does not, [M-movE] keeps M’s command in their composition

M| N. If both contain a, [M-sync] synchronises them, executing both commands together.

Based on this, we define the transition relation — p» between model-state pairs (Figure 3.2). Its

sole rule [s-step] does what we expect: if M has a command guarded by g, and state S satisfies g

(S + g), then with probability p;, we apply the update u;,.

Example 3.1.1. Consider the PRISM model

My ={[a](x=0)—>07: (x" =1)+03 : (x' =2),
[Blx=1)—>1:(x"=0)}
[{[e](y=0)—02: (" =1)+08: (y =2),

la](y=1)—>1: (" =0),

ly=2)-1:0"=0}
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Then by the rules in Figure 3.1,
My » [a](x=0)A(y=0)—> 014 : (x’ =D)A( =1)+056 : (x’ =) Ar( =2)
+006: (x’=2)A( =1)+024 : (x" =2)A(y’ =2)
My » [a](x=0)A(y=1)>07 : (x"=1)A(y’ =0)+03 : (x" =2)a(y =0)
My = [flx=1)>1: (' =0)

Mgy » [yl(y=2)—>1: (' =0)

Hence by [s-movE], some possible transitions are

a Y B
Mex —0.56 (MeX! {x = Ly = 2}) -1 (Mex’ {x = 1}) -1 Mex and

B
Mex ﬁ)0.14 (Mex’ {x = l’y = 1}) -1 (MeX’ {y = 1}) E)0.3 (Mex’ {x = 2})

3.2 A first look at translation

To verify typing contexts using PRISM, we need a systematic procedure for translating them into
PRISM models. Before we examine the details of the encoding, though, let us grow our intuition

with a simple example.

Example 3.2.1. In this section, we consider the following context:

0.2 : £,.ut.qde, .t 0. pt.p&ty t
Atran =P : 984 0.3 : £,.qPL.end q : p&q £y.p&ty.end
0.5 : ¢3.end, £5.end

With probability 0.2, p sends ¢; to q indefinitely; w.p. 0.3, £, twice; and w.p. 0.5, {3 once.

3.2.1 Dealing with states

MPST is a term rewriting system, whereas PRISM is state-based. Thus, we must first determine
how to map terms into states. Our plan of attack: translate each participant in the typing context
into its own module, with variable S, tracking p’s current position in its type. We then compose

these modules into a single model.
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Figure 3.3: Illustration of states in the encoding of A, (Example 3.2.1). Points on the number
line represent values of Sp and Sq, and arrows represent transitions. Unlabelled transitions
have probability 1.

Figure 3.3 shows the state encoding for A,,,. Each typing context reduction corresponds to two
PRISM transitions. For internal choice p®;¢;p; : ¢;.T;, we first make a probabilistic transition to
one of |I| intermediary states, then move to the state for T;. For external choice p&;¢f;.T;, we first

move to a shared intermediary state, then branch to each T;.

We deal with recursion in the obvious way: by looping back to the state of the corresponding

p-binding. A special state handles end, to which all terminated participants are sent.

Definition 3.2.1. The state space of a type T, written SS(T), is defined inductively:

SS(end) = 0
SS(ut.T") = SS(T')
SS(t) = 0
SS(p&ierti(B).T) = 2+ X, SS(T)

SS(p®ierp;  6:(B;).Ty) = 1+ I+ X, SS(T)

Each variable S, in the encoding of A = p : T, A’ has a value between 0 and SS(T), inclusive.
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Example 3.2.2. For the context A, given in Example 3.2.1,

SS(Atran(p)) = 1+ 3 + SS(ut.qde,.t) + SS(q®,y.end) + SS(end)
=44 55(q®t.t) + (1 +1+SS(end)) + 0
=4+(1+1+8St)+(2+0)+0
=4+24+2=38

SS(Atran(Q)) = 2 + SS(ut.p&t;.t) + SS(p&t,y.end) + SS(end)
=2+ S5(p&ty.t) + (2 + SS(end)) + 0
=2+ (2+8S()+(2+0)

=2+2+2=6,

and indeed S, € [0,8] and Sq € [0, 6] in Figure 3.3.

3.2.2 Synchronising modules

With an understanding of the structure of state transitions, we turn to the translation of A,

(Example 3.2.1). From this, we will study how communication is encoded.

Example 3.2.3. Translating A, from Example 3.2.1 yields the model

Miran = Mtran,p “ Mtran,q’

where the modules My, , and My,  are given by

Myganp = { [P q1(S, =0) > 02 : (5, = 1)
+03: (S, =2)
+0.5: (S, =3),

prqegl(S,=1—1:(, =4),
b q e ]S, =2) ~1: (S, =6)
peq ]S, =3)—1: (S, =8),

[p::ql(Sy, =49 —>1:(5," =5),

[p::q:: J81](SID=5)—>1 : (Sp'=4),
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[p::ql(S,=6)>1:(S," =7),

[p:: g ::EZ](SP:7)—>1 : (Sp’=8)}

Mirang = {[p =2 al(S; =0) > 1: (S, = 1),
[p g g](Sg=1D—>1:(5 =2),
[p g ] (Sg=1D—>1:(5 =49),
[p::q:: 3] (Sg=1—>1:(5 =6)
[p::ql(Sq=2)—>1:(S =3),
[p g ](Sg=3)—>1:(5 =3)
[p:: ql(Sg=9—>1:(S =5

[p::q:: J82](Sq:5)—>1 : (Sq'=6)}.

Hence, a possible reduction sequence is

p::q p:iq::ly
Miran —03 (Mtran’ {Sp = 2’Sq = 1}) -1 (Mtran’ {Sp = 6, Sq = 4})

p::q p:iq:ily
-1 (Mtram {Sp =7, Sq = 5}) -1 (Mtran’ {Sp 8, Sq = 6})
This corresponds to the context reductions

(p.q)e ()t
tran ————2—>043 p : q®fy.end,q : p&t,.end ————2—>1 p : end,q : end.

Earlier we mentioned that each context reduction corresponds to two transitions in PRISM. We

. . . (p.9)t p::q p::q::f
now make this notion more precise: —— , maps to — , followed by ———.

The first transition lets p make a probabilistic choice. The second uses synchronisation to inform
q of p’s choice, allowing both to move to the correct next state. Crucially, only the action chosen

by p can synchronise — no other transitions are possible.

3.3 A second look at translation

We now generalise the earlier example by defining a formal encoding function. We will first

define a nearly-complete inner encoding (- )), and then extend this with the closure module to
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(@)=
Ip : TA) = {Thp 050 Il (AD
ﬂendl}(p’n’m,f) =Q
Itk pnmp =2
1T nm, ) = ATEonm, fo{tn})
{a&ietiB)-Til (pnm,py = [q :: pI(S, =n) > 1 : (S, =n+1)
v Jlasp g, =n+1) -

iel
(Slg =m) if T, = end
1:9(S) = f(©) ifT, =t
(slg = next(i)) otherwise

U U ﬂTil}(p,next(i),m,f)
i€l
where next(i)=n+2+ Z{jeH j<i} SS(T)
{a®ierpr : tB) T/ pnmp = [p 2 1S, =n) = Do(pi : (S, =n+1))
iel

u U[p g ]S, =nti—

iel
(Slg =m) if T, = end
1:9(S) = f(©) ifT, =t
(SE) = next(i)) otherwise

U U ﬂTil}(p,next(i),m,f)

i€l
where next(i) =n+ 1+ |I| + Z{jeﬂ j<i} SS(T;)

Figure 3.4: The inner encoding function ( - ).

give the final encoding [[-].

3.3.1 The inner encoding

Definition 3.3.1. The inner encoding function (- )) is given in Figure 3.4.

The first two lines say that a typing context is translated by composing the modules produced by
the type-level encoding {ITﬂ(p)n’m, )> which takes a type T being translated, participant p, current
state n, end state m and a mapping ffrom variables to their state value. The remainder concerns

the type-level translation.

No new commands are added for end or t. For recursion ut.T, we extend the mapping with t — n
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and continue translating T. For & and @, we follow our discussion in Section 3.2.1 by first moving
to an intermediary state and proceeding to the continuation (using fif it’s a variable).
3.3.2 Some loose ends

The inner encoding is almost correct, except it has slightly more transitions than we ought to

have.

Example 3.3.1. Consider

A, =p : q®Lend.
Then A; -+, but its inner translation
AD={lp :: ql(S, =0)>1: (5 =1),

pqutS,=D-1:(5=2))}

allows

a0 25 @ s, = 1) T @ (s, - 2

Example 3.3.2. Consider
Ay =p : q®¢f.end,q : p&t,.end.
Then again A, -+, but its inner translation

(D ={[p  ql(S, =0) > 1: (5] = 1),
[p::q ::El](szl)—>1:(5F’):2)}
I1{lp::ql(Sg=0—>1:(5=1),

b g ]S, =D —>1: (=2}
allows

1) 255 (@AgD (S, = 1,5, - 1) (A, {8, o> 2,8, = 1)

0D 25 (@A (S, = 1,5, - 1) (@A, {5, > 1,5, o 2.
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. P::q piiq::t - N . .. .
More precisely, we treat and transitions as communications, implicitly assuming

both p and q participate. However, in some cases, only one of p or q contains this action, and

[M-MOVE] permits such transitions to occur without synchronisation.

Thus, we introduce a closure module that blocks these spurious transitions.

Definition 3.3.2. Let actions,(p) be the set of actions in (p : A(p)). If p ¢ dom(A), then we

treat actions, (p) = @. We write actions(A) = | actionsu (p).

pedom(A)

Definition 3.3.3. We define diff5(p, q) as the symmetric difference of actions:

diffa(p, q) = actions,(p) @ actionsp(q).

Definition 3.3.4. The closure module for the context A is given by

closure(A) = {disallow(p :: q) | p :: q € diffa(p,q)}

u {disallow(p :: q :: £) | p :: q :: L e diffr(p,q)},
where disallow(a) blocks a:
disallow(a) = [a] false —> 1 : ().

The () denotes a dummy update - it will never be applied.

Definition 3.3.5. The encoding [[-]] of contexts into PRISM models is defined by

[AT = (A) || closure(A).

Example 3.3.3. Translating A; (Example 3.3.1) yields

[A D= {1p + ql(S, =0) > 1+ (5 = 1),
[p::q ::{’](Sp=1)—>1 : (5[’)=2)}
I{[p :: qlfalse > 1 : (),

[p::q::t]false > 1: (0},
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| and thus [A;] ».

3.4 Correctness

We now address correctness of the encoding with respect to operational semantics. First, we
show that the encoding is sound (Theorem 3.4.9): every typing context reduction corresponds to
transitions in the encoded module. Next, we demonstrate that the encoding is complete (Theo-

rem 3.4.15): PRISM transitions also correspond to typing context reductions.

3.4.1 Soundness

Taking a compositional approach, we first show that the inner encoding (A) is sound with re-

. L p:ql(B) p:q?t(B) )
spect to the internal transitions and (Lemma 3.4.5). We then use this result to

demonstrate the soundness of [[A]].

A result we ought to have is that (| - ) preserves behaviour under recursion unfolding: (p : ut.T)
should be equivalent to (p : T{pt.T/t}). But what does it mean for PRISM modules to be equiv-
alent? Though their internal states and commands may differ, they should exhibit the same ob-

servable transition behaviour. This motivates the use of bisimulation to define equivalence.

Definition 3.4.1. Let (M;, I;) and (M,, I,) be PRISM model-state pairs. A binary relation R is

a bisimulation if:
1. (I;, ;) € R, and
2. For all (5;,S,) € R, action e and p € [0, 1],
(My,5;) =, (My,S]) = 38} s.t. (My,Sy) =, (M, S3) and (57, S) € R; and
(M,,S,) ip (My,S5) = 3S] s.t. (M, S,) ip (M, S}) and (S, S3) € R.

We say (M;,];) and (M,, I,) are bisimilar if such a relation R exists, and write (M, ;) ~

(My, I).

Bisimulation allows us to write a coinductive proof. To show two model-state pairs are bisimilar,
we define a relation R and verify it satisfies the bisimulation conditions. To define R, though,

we need a precise way of reasoning about the reductions available from a state. We therefore
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source,.1 = sourcezp,o’@(T)
U {{Sp — SS(T)} — (end,0,0) }
sourceEp’n’f)(end) =0
sourceEp’n’f)(t) =0
sourcezp’n’f)(ut.T) = sourceép’n’fu{h_){sp,_m}})(T)
sourceép,n’f)(q&iel{fi(Bi).Tl-) ={{S, » n} » (q&;esti(B).T;, 0, f),
{S, = n+1} > (q&efti(B).T;, 1, )}
U Lg sou rceEp,next(i),f)(Ti)
where next(i) = ln +2+ Z{je]|j<i} SS(T;)

sourceq, , (A®ierpi + iBi).Ti) = {{S, = n} > (a®ierpi + i(B:).T;, 0. )}
v U{{Sp B n+if o (@ 4(B). Ty, )}

iel

U U sou rcezp’next(i))f)(Ti)

i€l
where next() =n+1+|I| + Z{jelqu} SS(T;)

Figure 3.5: Definition of sourcep:T(S).

introduce a source function that identifies the location of a state within its encoding.

23

Definition 3.4.2. The source of a state S within the module (p : T), written source,.7(S), is

given in Figure 3.5.

The function outputs a triple sourcep:T(S) = (T, x, f). The first element T’ is an end, @, or &

occurring as a partial type of T, representing the substructure of T associated with the state. The

value x indicates the state’s position: x = 0 marks the entry point, while higher values denote

later stages in the transition. Finally, f maps variables to their corresponding states.

Example 3.4.1. Consider the type T defined by

0.1 : ¢;.end
T=q®

The following proposition says that source,. 1(S) really does what we expect.

The possible states of (p : T|) and their corresponding sources are illustrated in Figure 3.6.
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{Sp — 1} {sp — 5}
01 (T,1,0) (end,0,9)
7
o)
(T,0,2)
. /\
09 {8, = 2} {S, » 3} {S, — 4}

(T.2,0) (q@63.t,0,{t > {S, » 3}~ (q@t3.t,1,{t > {S, > 3}})

Figure 3.6: Transitions of (p : T) (Example 3.4.1). Nodes are labelled with their state S and
corresponding source . 1(S) on separate lines. Unlabelled transitions have probability 1.

Proposition 3.4.1. Let T be a type and S a state for (p : T|). Then:

1. Ifsource,.1(S) = (end,0,), then (p : T),S) ».

q::p
2. If source,.1(S) = (q&esti(B).T;,0, f), then ((p : T),S) ——1 ((p : T),S’) where
source,,.1(5") = (q&;eti(B;).T;, 1, ).
qiipiig
3. If source,.7(S) = (q&;esti(By).T;, 1, f), thenvi € I-((p : T),S) ———; (p : T),S")

where S’ = f(t) if T; = t, and otherwise

(end,0,9) if T, = end
source,.7(S") = ¢ (T°,0, fulU{t; » '} if T; = pty - put, T/
(T,0, f) otherwise.

) p::q ,
4. If source;,.7(S) = (a®erp; « 6i(By).T;, 0, f), thenvie I-((p : T),S) ——, ((p : T),S")
with sourcey . 7(8") = (9®;erp; : 4(By).Tyu i, ).

p:iq:id;
5. If source,.7(S) = (q@®p ¢ 6(B).Tyi, f) withi > 0, then ((p : T),S) ——

((p : T, S”) whereS’ = f(t) if T; = t, and otherwise

(end,0,9) if T, = end
source, . 1(8) = 4 (7,0, fuU{ty > ') if Ty =ty -t T
(T;,0, f) otherwise.

Moreover, ((p : T),S) cannot make any other transitions.

Proor. By induction on T, walking through the recursive calls of sou rceEp nf) (M and {Thp pm, )
in parallel. In particular, we maintain the invariant that source(, , f)(T) is called iff {Tl, m, )

is called, where f(t) = {Sp — f/(t)} forall t. O
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©) . ©)
D) 05 : ¢t
@ @ fo5:e.t o |os: 1’1.,ut®®.q\2’ea{ 1
- @ q @ 0.5:¢ .end:
0.5 : £,.end 2
’ 0.5 : Ez.end

Figure 3.7: Unfold correspondence for Example 3.4.2. Partial types that are unfold
correspondent are annotated with the same circled number.

How shall we define the bisimulation relation for (p : pt.T) ~ (p : T{pt.T/t})? We'd like to
relate equivalent partial types of put.T and T{yt.T/t}, modulo unrolling of t (see Figure 3.7). We

tackle this by introducing a novel unfold correspondence relation.

Definition 3.4.3. The unfold correspondence of two partial types with respect to T andt, written

Lt is the least relation satisfying the following rules.

[Uc-rEC]
[Uc-REFL] [uc-T] v £t T Cre Ty
T T t e ptT pt’. Ty Eqp pt’ T,
[uc-ouT] [uc-IN]
viel : Ti ET,t Tl/ viel : Ti ET,t Tl’
qDierpi : 4i(B;).T; Ty a®ierp + 4:(By).T] q&ierti(By).T; Erp q&ierti(B).T]

Example 3.4.2. Let T = q & {0.5 : £,.t,0.5 : ,.end}. The following derivation tree shows

T Cry T{pt.T/t}:

[uc-T] ——— [Uc-RrEFL]
tCry pt.q@®{0.5 : £,.£,05 : ty.end} end Cy end

[uc-ouT]
q®{0.5 : €,.£,0.5 : £y.end} Ty q@{0.5 : £ pt.q®{0.5 : £.£,0.5 : £5.end}, 0.5 : y.end}

Figure 3.7 illustrates all unfold correspondences between partial types of yt.T and T{pt.T/t}.

Lemma 3.4.2. For all types T,T" and variablet, T" Cr ¢ T/ {pt.T/t}.
Proor. Straightforward induction on the structure of T”. O
Lemma 3.4.3. For every typeT, (p : pt.T) ~ (p : T{ut.T/t}).

ProOF. Suppose S; and S, are states for (p : pt.T) and (p : T{ut.T/t}) respectively, and let
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(T1, %y, fy) = source,,. 4 7(Sy) and (Ty, x,, f5) = sourcep:T{m.T/t}(Sz).
Define a binary relation R to be the least relation such that (S;, S,) € R if:

e X| = Xy, and

« Ty B4 Ty, and

« vt’ € dom(f;) n dom(fy) - (f1(t'), (1) # (51, 5,) = ([ (V), L)) € R
We will argue that R is a bisimulation relation.

Takeany (S, S;) € R, and againlet (Ty, x, f;) = source. s 7(S;) and (Ty, x, fo) = source,. 14,17/ (S2)-
Since T; Cy¢ T, both types must be end, @, or & (the latter two sharing the same participants,

labels, basic types, and probabilities).
In the first case, both ((p : pt.T),S;) +» and ((p : T{ut.T/t}),S,) ».

For the second case, suppose Ty = q®;¢;p; : 4:(B;). T/, and T, = q®;¢1p; : ;(B;).T". There are two

cases to consider, depending on the value of x.
1. If x = 0, then by Proposition 3.4.1, the only possible transitions are
piig ,
W 105D 25 (@ peTS))

(p : T{HET/E}).S,) —, ((p : T{HtT/E}).$p)

for all k € I, with sour‘cep:m.T(S{) = (Ty,k, f;) and sourcep:T{m‘T/t}(Sé) = (Ty, k, f;). Since

(5;,8,) € R, we already have T; Tty Ty; therefore, (57, 5;) € R also.
2. If x > 0, then the only possible transitions are
p:iqiily, ,
p : ptT).S) ———1 ((p : pt.T),5)
priqiity,
p = T{t.T/1}),Sp) ——1 (p = T{pt.T/t}), 53).
We consider the structurally possible cases of T4 and T%. By Proposition 3.4.1:
(a) if T}, = T{ = end, then source,,. 4 7(S) = source, . ; 1(53) = (end, 0,?);
(b) if T, = TY = t’ (potentially t’ = t), then S| = fi(t) and S = f,(t);

() i T} =ty - ), T’ and T = ptf -t} 77, then source,, . 7(57) = (17,0, fyulJ, {t/ -
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S1})and source. ; 7(S7) = (T”,0, fLulJ{t/ = S;}),and T” Ey ¢ T” by the definition
of Erg;

(d) if T = tand TY = pt.T, then source,. , 7(S7) = (T.0, {t— S7}) (in fact, S| = @) and

source, . 14 1/t}(53) = (T,0, fu {t = S} });

(e) otherwise, source. 1 7(S;) = (T}, 0, fi) and source,,.1( 4 1/11(S3) = (T%, 0, f2), with

T, C1¢ T{ by the definition of Cy.
Thus, in all cases, (S7,5;) € R.

The third case is analogous. Finally, source,,. ; 7(?) = (T, 0, {t = @}) and source,, .11 7/¢}(?) =
(T{pt.T/t},0,0), so applying Lemma 3.4.2, (@,®) € R. Hence R is a bisimulation relation, and

we conclude (p : pt.T) ~ (p : T{pt.T/t}). O]

We now prove a simple result about modules that enter the state space of a closed type.

Lemma 3.4.4. Let T, T’ be (closed) types, and S a state for (p : T) such that sourcep:T(S) =

(17,0, f). Then((p : T),S) ~(p : T’).

ProOF. Let Sy, S, be states for (p : T)) and (p : T’), respectively. Let (T, x;, f;) = sourcep:T(Sl)

and (T, x,, f,) = source,.1.(S;). We define a relation R as the least relation such that:

L (T, x) = (Ty, x5);

2. vt' € dom(fy) ndom(fy) - (f1(t'), (")) = (5,S,) = (f1(t), fo(t')) € R.
We proceed as in Lemma 3.4.3 to argue that R is a bisimulation relation. Notably, (S,®) € R. [
This enables us to prove the soundness of (p : T).

Lemma 3.4.5.

p:qle(B)
L Ifp: T———,p: T, then

35,8, -(p : T) M’p Wp : TD,S) Lq::fﬁ Wp = TS ~(p : T’).

p:q?t(B)
2. Ifp: T———p: T, then

35,8, - (p = T) i‘i’l Wp = TD,Sp) ‘u‘[—’l Ap : T),Sy) ~(Qp = T').
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Proor.
1. We proceed by induction on the rules of —.
P:q!(By)
Case [cT-out] Let T = q®ep; : ¢;(B;).T;, and suppose p : T ————, p : Ty for some

k € I Then by the definition of ( - ),

35,8, -(p = T) ﬁ:‘ﬁ’pk p = TD.Sp) ﬁie—kﬁ p = T, Sy).

Since Ty is closed, ((p : T),S,) ~ (p : Tg) by Lemma 3.4.4.

p:q!(B)

Case [cT-rREC] Suppose p : put.T p P = T’. By the inductive hypothesis,

31,8, - @p + T{ET/E) —, ((p © T{ptT/E}).$)
p::q::f

—— ((p : T{t.T/t}),S) ~(p : T').
But (p : pt.T) ~ (p : T{ut.T/t}) by Lemma 3.4.3, and hence

B ciqgiid
357,55 (p + ptT) —>, (Ap © kTN~ ((p + j£T).55) ~ (p = T').

2. Analogous.
O

We now explore results that link the inner encoding ( - ) with the full encoding [[-]. Firstly, we

define what it means to combine states.

Definition 3.4.4. Let S; and S, be states for a PRISM module M. Their union is given by

S;(x) if x € dom(S;), x ¢ dom(S,)
(S1 U S)(x) =< Sy(x) if x € dom(S,), x ¢ dom(S;)

undefined otherwise.

Using this definition, we formalise the relationship between the two encodings.

Lemma 3.4.6. Let A = p : T,q : T/, A’ be a context. If ((p : T),S;) ip ((p : TD,S;) and
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(g : T'),S,) &1 (q : T'),S3), then for any state S of (A’),

(IATL Sy u Sy uS) =, (TA]L. 8] u S5 u ).

Proor. By case analysisona =p :: qorp :: q :: £ O

Lemma 3.4.7. Let A =p : T,q : T’,A’ be a context. Further let S; and S{ be states of (p : T,

S, and S} states of (q : T’), and S a state of (A’). If
(IATL S, u Sy uS) =, (AL Sf u S;u )
witha =p :: qorp :: q :: ¢, then

p = T0S) =, Wp = T0,S)) and ((q : TD,$p) =1 (Uq = T').S3).

Proor. We first argue using the definition of closure(-) that @ € actions,(p) n actions,(q), and

proceed by case analysis on a. O

These results reveal a useful property: bisimulation on ( - )) is closed under composition!

Lemma 3.4.8. Let A =p; : Ty,-,p, : Tpand A" =py = Ty, p, = T IF((pi 2 Ty, S) ~
(p; : T/ for alli, then ([A],S; u--uS,) ~ [A’].

Proor. For all i, let R; be a bisimulation relation for ((p; : T;),S;) ~ (p; : T/). Now let
R={(MuTyu-uT,),(TjuT;u-uT,))|Vi-(T,T) € R;}.

We then check that R is a bisimulation relation by case analysis on « and using Lemmas 3.4.6

and 3.4.7. O
We are now ready to prove soundness.

Theorem 3.4.9 (Soundness). For every context A, A" and probability p with A —, A’, there
exists S such that [[A]] —>?J (IATLS) and [A]] ~ ([ATL S).

(prsp2)t
Proor. Let A = p; : Ty,-,p, : T,. Without loss of generality, we assume A —1—2——>p A, so
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AN =p; T, py : Ty, p3 : T3, p, ¢ Ty Then,

[AL=(py : TD Il - [[dpy = Tp) Il closure(A) and
(AT =(py = TIDIHdpo = ToD (1 Qps = TsD Il . [[Qpy = Tp) [| closure(A”).
Py :py'e(B) Py :p;?¢(B)

By [cT-7], we must have p; : Ty ————, p; : T{and p, : Ty ———; p, : T5. Applying

Lemma 3.4.5, there exist states S;, 5], 5,,5; such that

P1::P2 priipyiit , ,
(pi : T —p (py = T4D.S1) ———1 Wpy = T4D.S)) ~ (py = T,

P1:ips priipyii , ,
(py : To) ——1 py = ), S) ———; ((ps - TZD’SZ) ~(p, : T2D-

We collapse the left three columns using Lemma 3.4.6:

P1::p2 ppipyiid
[a1 222 @Al s, us) (@l s usy.
Finally, we appeal to Lemma 3.4.8 to conclude ([A]],S] v S;) ~ [A”]]. O

3.4.2 Completeness

We first prove a weaker result (Lemma 3.4.11), following the approach for soundness by first

considering ( - ) (Lemma 3.4.10) then generalising to [[-]|.
Lemma 3.4.10.

L s S @ s S (@ s TS, then

p:qle(B)
W -p:T——,p: T and((p: T),S) ~(p: T

2 0700 T~ o s ) L (@ TD S, then

, p:q?e(B) , , ,
I -p: T———;p:Tand((p : T).S) ~(p : T').

ProoF. Examining the definition of ( - ), T must have the form

T = pty.pity. - pit, . q®jerp; < 6(B;).T;.
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for (1), and
T = ptyprty. - ity q&iert;(By).T}.
for (2). We proceed by induction on n, using Lemma 3.4.4 for the base case and Lemma 3.4.3 for

the inductive case. O

i
Lemma 3.4.11. For every context A and states S, S’ such that [[A]] p (AT, S) —>1

(AT, S), there exists A with A —, A’ and (TATL, S ~ [A'].

Proor. Let A = p; : Tq,-,p, : T,, and without loss of generality, suppose p = p; and q = p,.

Then,

AT =(py - TD I - 11 Qpyy = T, || closure(A).

Let us rewrite S = S; uS, and §” = S] uS} where S;, S are states for (p; : T;) and S,, S} are states

for (p, : T,), so that

AT =25, (AT, S, u'Sy) LR NI

Then by two applications of Lemma 3.4.7,

(py : T4D m’p py = T4D. 51 Lﬁ py = T1). 5D,

P2 HPpt
(CPPY) -—"1 (p : T2).S2) ———>1 p2 : T2, S5).
Applying Lemma 3.4.10, there exist T{, T} such that

P1:p2'KB) , P2+ p; ?4(B) ,
prt Ty ———pp1 : T}, Pt Ty ———1p2 : Tp,

pr : T SD ~py =TI (py = T2).S3) ~ (py = Th).

(p1p2)e
Let A" =p; : T{,py : Ty,p3 ¢ T3, -+, p, = T, Then A #—9 A’ by [ct-7] and [cT-sc], and by
Lemma 3.4.8, ([A]l,S”) = ([A]l, S] u S5) ~ [[A’]], as required. O
o . p::q p::q::¢ .
This is a weaker result as it mandates —— and ———— to occur consecutively, rather than

allowing an arbitrary interleaving of transitions.

However, defining the general behaviour is tricky — there’s no typing context reduction directly

p M q p M q
corresponding to a single partial transition ——! Intuitively, if [A]] —— ([[A]], S), then ([[A]], S)
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should still be related to [[A]] even if not bisimilar, since the transition isn’t complete until the
. p:iq::f
corresponding — occurs.

We encode this intuition into a notion of refinement via partial transitions.

Definition 3.4.5 (Refinement via partial transitions). We say ([A]l,S) refines ([A’]l,S’) via
partial transitions with probability p, written ([[A]], S) Qp ([A’T, S”), if they satisty the follow-

ing rules:
1. if (M,S) ~ (M’,S’), then ([A]], S) < (ra’f,s);

2. i 35" - ([A'1,8) —, ([A’],5”) and ([A1,S) <, (I2].5"). then ([ALLS) €
(2

pr

This allows us to relate model-state pairs separated only by partial transitions. It turns out that

this happens exactly when partial transitions involve distinct participants:

Notation 3.4.1. We write ([[A]],S) gp (TAaQ,s”) if3s4, ..., S, such that
P1::q p2::q Pnidn
([A].8) —,, ([ALLS) ——, 5, ([1A1.S,) = ([ALL "),

with py, -, pns Q15+, q,, all distinct participants, and p; p, -+ p, = p.

Lemma 3.4.12. ([ADS) €, (IA]LSy) iff 355 - ([A'].5y) (SRR » (1A71,5) ~ ([A1,Sy).

Proor. The backwards direction is immediate from the definition of C.

For the forwards direction, we examine the definition of (- )). Intuitively, if a participant has

already made a partial transition, they can’t make another one. O

This is a useful characterisation since transitions with disjoint participants commute.

Lemma 3.4.13. Let p,q,r,s be distinct participants. Furthermore, let actionsa; = p :: q or
(04 (07
p::q:fy,anday =1t sorr s 4y IF([A]LS) —1>p (AT, s —Z’p’ (AT, S”), then

35, - (IALLS) =, (IALLS) =, (AT ).

Proor. We show that variables used in the guards and updates of each transition are independent.

O
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We use this property to generalise Lemma 3.4.11 to the full completeness result.

Lemma 3.4.14. Suppose ([A]], S) Qp [A’] and ([A], S) ipz (IAT, S”). Then3A” - A’ —>;;3 N
1

and ([A]l,S") §p4 A", with pypy = p3py.

Proor. By Lemma 3.4.12,

T[] =, (V1) ~ (1AL S) (1)
and by bisimilarity,
- ([A1,T) =, (A7) ~ (AT, S7). (32)

We consider the two possible cases of .

Casea=p :: q Then

]S, AT ~ (ALLS),

so setting A” = A’ (and therefore p; = 1), indeed ([A],S") gp . [A].
1F2

p::q::d p::q
Casea =p :: q:: £ Then p, = 1. Since ([A’]l, T) —, there must’ve been a —— within

A" L_:):)Pl (IA’1, 7). Hence, we apply Lemma 3.4.13 to (3.1) and (3.2) so that

w,u -] 2, @ m 5 (arg,on) L‘i)-ipl/pg AT, (33)

Applying Lemma 3.4.11 to (3.3), 3A” - A’ -, A” and ([A"]LU’) ~ [A”]]. By bisimilarity,

P

W] 2, ALY ~ AT,

Recalling ([A’],T") ~ ([A’]],S”), we have
AN, , 1671

with p; -1 = ps - % as required. O

*

Theorem 3.4.15 (Completeness). For every context A, state S and probability p with [[A]] — »

(A1, S), there exists A’ such that A —>;, A and ([A], S) Ep” (AT, with p= p’p”.
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Proor. For some n > 0 and states Sy, -, S,

A1, (ALLS) =, .=, ([A]lS,) = ([A]lS),

with p; py -+ p, = p. We proceed by induction on n.

Casen =0 Then ([A],S) =[[A]l and p = 1. We pick A’ = A (and therefore p” = 1), and indeed
[AT <, [AT.

Casen = k+1 By the induction hypothesis, 3A” - A -7, A’ and ([A]L. S,) gp/' [A"], with

X1

p'p” = pypr Since ([ALLS,) —,, . ([ALLS), by Lemma 3.4.14, 3A” - A” —»; A” and

() Qq, [A”]l, with p” py = qq’. Hence A =%, A”, and (p'qQ)q" = p'p” pry1 = p. as
required. 0

3.5 Property checking

With the encoding in place, we must now write desirable properties as logical formulae.

3.5.1 A brief introduction to PCTL*

We first present the relevant fragment of PCTL*, an extension of PCTL (probabilistic computation
tree logic). Due to space constraints, we opt for a brief presentation; a more principled discussion

can be found in [Baier, 1998].

Definition 3.5.1. The syntax of our fragment of PCTL* is given by

® == Pmin (p) (probability)
oY =a (atomic proposition)
| = | onry | ovy (negation, conjunction, disjunction)

| Ue (always)

| So (eventually)

We write ¢ = 1 as a shorthand for —¢ v ¢.




CHAPTER 3. PROBABILISTIC MODEL CHECKING 35

Definition 3.5.2. A path 7 of a PRISM module M is a (potentially infinite) sequence of states

S1;Sy; -+ such that vi € [1,|x]) - (M, S;) = (M, Si;1)-

We call ¢ a path formula. Path formulae act on paths 7 of a module M, and we write 7 F ¢ if =
satisfies ¢. Given a model M, Pmin (¢) tells us the probability? of obtaining a path 7 = @;S,; -

starting from @ such that 7  ¢.

Definition 3.5.3. Let © = S;;S,; - be a path, and denote 7[i..] to be the subpath S;;S; ;.

The semantics of a path formula ¢ is given inductively:

TEa = Sika

T E P = TE @
TEQAY = TEQATEY
TEQVY = TEQVTEY
rEOg = Vi-mli.] Eo

T = 3i-nfi.] ko

3.5.2 Defining specifications

We define several PRISM labels — boolean expressions over variables — to act as atomic propo-
sitions. For conciseness, we only give informal meanings here, though it is straightforward to

express them as conjunctions or disjunctions of state variables.

Definition 3.5.4. Given an encoding [A]], we define the following labels (their names denoted

with “quotes”):
« S+ ‘“end” < Vp € dom(A)- S(Sp) = SS(A(p))

« Vp :: q :: £ €actionsy(p) u actionsp(q) -

p::q::d
St send :: p i q i 87 = ((A(P)),S) ——

p::q:id
« Vp,q € dom(A) - S “receive :: p :: q7 <= ;- ((A(Q)),S) ——

*More precisely, this gives the minimum probability across all realisations of nondeterminism. In our case, how-
ever, all probabilities are equal thanks to confluence.
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« Vp :: q :: €€ actionsp(p) uactionsy(q) -

p:iq::d
S+ “receive :: p :: q :: £ 7 = ((A(Q),S) ——

Moreover, PRISM has an inbuilt label “deadlock” such that S -+ “deadlock” < ([[A]],S) .

Using the labels, we write the following property specifications:

safe(A) = Pmin(D( (“send iip g7 A “receive it op i q”)

p::q::teactions(A)

= “receive :: p :: q :: E”)) =1

Ppe(A) = Pmin (O (“deadlock” = “end”))

Prerm(A) = Pmin (& “end”)

In a safe context, if p can send £ to q and q is ready to receive from p, then q must accept ¢. The
probability of deadlock freedom is the probability of obtaining a path where no reductions are
possible only when all participants are in the end state. Finally, the probability of termination is

the probability of obtaining a path where all participants eventually enter the end state.



Chapter 4

Implementation

With the theoretical foundations in place, we now turn our attention to implementation. In this
chapter, we present PrOSE, a tool for the verification of probabilistic session types. PROSE is
implemented in OCaml 7/, following the compilation pipeline illustrated in Figure 4.1. We start
with an input context, which is converted into an abstract syntax tree (AST) by the lexing and
parsing stages (Section 4.1). The validation stage (Section 4.2) checks that the AST is well-formed,
after which the translation stage (Section 4.3) produces abstract representations of the translated
PRISM model and properties. Finally, the pretty-printing stage outputs . prismand .pctl files for

verification via PRISM.

4.1 Lexing and parsing

The lexing stage converts the input context file into a sequence of tokens. For example,
p:qg ()1 . end
might be converted into
IDENT "p"; COLON; IDENT "q"; OPLUS; IDENT "1"; DOT; END.

The full set of tokens and their regular expressions are given in Figure 4.2. We then invoke

ocamllex! on these rules.

The parsing stage converts the stream of tokens produced by the lexer into an AST. To do this, we

'https://ocaml.org/manual/5.3/lexyacc.html
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.ctx file

lexer.mll
parser.mly
Ast.context Well_formed.check_context
Translate.translate Translate.translate
Prism.model Psl.annotated_property list
Printer.print_model Printer.print_properties

.prism file .pctl file

Figure 4.1: An overview of the PRosE compilation pipeline.

Token Regular expression
IDENT (a-z | A-Z | J) (a-z | A-Z | ©-9 | _)*
PROB 0111 1.0] 0.(0-9)%
COLON :

DOT .

COMMA ,

END end

MU mu

OPLUS )

AND &
LBRACE {
RBRACE }
LPAREN (
RPAREN )

INT Int

BOOL Bool

UNIT Unit

Figure 4.2: Lexer tokens and their corresponding regular expressions.
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(context) =@ | (context-item) (context)
(context-item) == IDENT : (session-type)
(session-type) ==end | IDENT

| mu IDENT . (session-type)
| IDENT (+) (int-choices)
| IDENT & (ext-choices)
(int-choices) == (choice) | { (prob-choices) }
(ext-choices) == (choice) | { (choices-list) }
(choice) == IDENT . (session-type)
| IDENT ( (basic-type) ) . (session-type)

(choices) == (choice) | (choice) , {choices)
(prob-choice) == PROB : (choice)

(prob-choices) == (prob-choice) | (prob-choice) , (prob-choices)
(basic-type)y ==1Int | Bool | Unit

Figure 4.3: Context-free grammar for machine-readable typing contexts. For clarity, we present
all tokens except IDENT and PROB in their expanded form.

first write down the syntax of session type contexts as a context-free grammar (CFG). The rules

are given in Figure 4.3 - note this largely mirrors the mathematical syntax of session types.

Example 4.1.1. The context

 tq® 0.3 : ¢.end  tp& ¢;.end
PR 07 - gt 4P

can be written in our machine-readable format as

p:mut.q((){
0.3 : 11 . end,
0.7 : 12 . t

q:mut.p&{
11 . end,
12 .t

We augment each production rule in the CFG with rules on how to construct the abstract syntax
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context
/\
context_item context_item
/N /N
p Mu q Mu
N SN
t Internal t External
N SN
q prob_choices p choices
T~ T
prob_choice prob_choice choice choice

2 N N NN

0.3 choice 0.3 choice ¢ End ¢, Variable

/N SN |

¢, End ¢, Variable t

t
Figure 4.4: Abstract syntax tree for Example 4.1.1.
tree (AST), then invoke the Menhir parser generator.

Example 4.1.2. The parsing rule for (session-type) is

session_type:

| END
{ End }
| var = IDENT

{ Variable var }

| MU var = IDENT DOT cont = session_type
{ Mu (var, cont) }

| int_part = IDENT OPLUS int_choices = int_choices
{ Internal { int_part; int_choices } }

| ext_part = IDENT AND ext_choices = ext_choices

{ External { ext_part; ext_choices } }

For example, the second rule states that the sequence MU; IDENT; DOT; <session-type> pro-

duces a Mu node.

2https://gallium.inria.fr/~fpottier/menhir/
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(float * update list) list

type model = and label =
{ globals var_type list { name label_name
; modules pmodule list ;. expr bool expr
; labels label list }
}
[@e@deriving sexp_of] and _ expr =
| IntConst : int -> int expr
and pmodule = | BoolConst bool -> bool expr
{ locals var_type list | Var : 'a variable -> 'a expr
; participant string | Eq : 'a expr x 'a expr -> bool expr
; commands command list | And : bool expr * bool expr -> bool expr
} | Or : bool expr * bool expr -> bool expr
and command = and _ variable =
{ action Action.t | StringVar string -> 'a variable
; guard bool expr
; updates and update =

IntUpdate of int variable x int expr

41

BoolUpdate of bool variable * bool expr

Figure 4.5: An excerpt from prism.ml.

Example 4.1.3. The AST for the context in Example 4.1.1 is given in Figure 4.4.

4.2 Validation

The validation stage checks that certain invariants hold in the typing context. Namely:
« all variables are bound;
« each probability p; € [0, 1];
- internal choices have . p; = 1.

If any of these are violated, PrRosE displays an error.

4.3 Translation

The translation stage implements the procedure from Chapter 3. We adopt several optimisations:
for instance, we use sets and maps based on binary search trees (from Base?) to track variables and
actions efficiently. This stage produces ASTs for the PRISM model and property specifications,

with its structure defined by a mutually recursive type shown in Figure 4.5.

Shttps://opensource. janestreet.com/base/
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Table 4.1: Available flags for prose verify

Flag Description
-print-ast Print internal AST representation for debugging
-raw-prism Print raw PRISM CLI output for debugging

-translation-time | Print time taken for translation of context into PRISM

4.4 Using PROSE

To verify typing contexts, users can pass a context file to the verify mode.

$ prose verify examples/prob-deadlock.ctx
Type safety

Result: true

Probabilistic deadlock freedom
Result: 0.30000000000000004 (exact floating point)

Probabilistic termination

Result: 1.0 (exact floating point)

A number of debugging flags are available, as listed in Table 4.1.
To display the PRISM model and property files, we use the output mode.

$ prose output examples/prob-deadlock.ctx

global fail : bool init false;

module closure

closure : bool init false;
endmodule
module commander

commander : [0..4] init 0;

commander_a_label : [@..2] init ©;

// Probabilistic deadlock freedom
Pmin=? [ (G ("deadlock” => "end")) 1]

// Probabilistic termination
Pmin=? [ (F ("end") 1]



CHAPTER 4. IMPLEMENTATION

Table 4.2: Available flags for prose output
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Flag Description

-0 string Write PRISM model output to filename (default: print to stdout)
-p string Write PRISM property output to filename (default: print to stdout)
-print-ast Print internal AST representation for debugging

-translation-time | Print time taken for translation of context into PRISM

We can use the flags in Table 4.2 to instead save the output as files.
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Evaluation

In this chapter, we evaluate the effectiveness of PROSE in various scenarios. We first verify prop-
erties of interesting typing contexts. Then, we run a comprehensive suite of performance bench-

marks to measure PROSE’s efficiency.

5.1 Case studies

5.1.1 Recursive map-reduce

A recursive map-reduce protocol (extended from [Scalas and Yoshida, 2019]) is described by the

following context:

mapper : pt.worker; @datum(int). reducer : pt.worker; &result(int).
worker, ®datum(int). worker,&result(int).
worker; @datum(int). worker;&result(int).
continue(int).t 0.4 : continue(int).t
mapper®
reducer& StOp.WOl’keH@StOp. 0.6 : stop.end
worker, @stop.

worker;@stop.end

vi € {1,2,3} - worker; : mapper&datum(int).
pt.reducer@result(int).

{datum(int).t
mapper&
stop.end

44



CHAPTER 5. EVALUATION 45

mapper reducer
datum
datum datum stop
worker, worker, worker; continue mapper
stop stop
sto
result result P
result
reducer worker; worker, worker;

Figure 5.1: Illustration of the recursive map-reduce protocol, while the system is continuing
(left) and stopping (right).

An illustration is given in Figure 5.1. The mapper sends datum to three workers, which each
return a result to the reducer. The reducer then either continues (w.p. 0.4) or stops (w.p. 0.6).

If continuing, the mapper distributes more tasks; otherwise, it signals the workers to stop.

Using PROSE, we can determine that this protocol is safe, deadlock-free and terminating (the

latter two almost surely).

$ prose verify examples/rec-map-reduce.ctx
Type safety

Result: true

Probabilistic deadlock freedom

Result: 1.0 (exact floating point)

Probabilistic termination

Result: 1.0 (exact floating point)

5.1.2 Knuth-Yao dice

Taking inspiration from a PRISM case study’, we consider a dice program due to [Knuth and Yao,
1976], illustrated in Figure 5.2. It describes a Markov chain modelling a six-sided die using only

coin flips.

The corresponding context is given in Figure 5.3. We model each node x with two participants
py and q, to receive from and send to different participants in a single @ or &. The i-th face of

the die is represented by the participant d;. If outcome 1 is chosen, d; sends repeat to dummy

'https://www.prismmodelchecker.org/casestudies/dice.php
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Pa

Pp :

Pc

Pd

Pe

Pr -

0.
: utqa&gO-qcéB{

0.
: pt.qp&go.qy® 0

: qb&go.quB{

: pt.qc&go.ngB{ '

Figure 5.2: lllustration of the Knuth-Yao dice program.

0@ 0.5 : a.end
+ 0.5 : b.end

0.5 : d.t

.q,&go.q, &<
Ha b {O.S:e.t

5: ft
05: gt

5: bt

5 : one.end

0.5 : two.end
0.5 : three.end

0.5 : four.end

&go.qr®
e BO-Gf {O.S : five.end

05 :ct
0.5 : six.end

i qq&done.pt.dummy@repeat.t

: q¢&done.end

a : P

qp -

9e

qd

Qe *

qf -

g

ds : g¢&done.end

& a.pt.p, ®go.qy&redo.t
? b.ut.p. ®go.q,&redo.t

itpy & d.pg@go.t
e.p.dgo.t

f.prdgo.t
: utpc&{

g-Pg dgo.t

b.q,®redo.t
:oputpy& {

one.d; @done.end

& two.d, @done.end
Pe three.d;@done.end

four.d,@done.end
pr&
five.d; @done.end

c.q,®redo.t
: yt.pg&{ a4

six.d;@done.end

d, : g.&done.end d; : q.&done.end

dg * qg&done.end

dummy : pt.d,&repeat.t

Figure 5.3: Typing context for Knuth-Yao dice.
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forever; otherwise, dummy waits for d, indefinitely, so the context is deadlocked.
The probability of deadlock freedom therefore equals the probability of obtaining outcome 1.

$ prose verify examples/dice.ctx

Probabilistic deadlock freedom
Result: 0.16666698455810547 (+/- 1.1920963061161968E-6 estimated;
rel err 7.1525641942636435E-6)

As expected, outcome 1 has probability %. We can rearrange d; to verify that other outcomes
have probability 1 too.
5.1.3 Monty Hall problem

The Monty Hall problem [Dickey et al., 1975] is a well-known probabilistic paradox. We consider

two contexts

Agtay = car : Teqp, host : Ty, player : Tstay
At:hange =car @ Tey, host : Thost> player : Theaves
where
0.5 : £y.player&?t;.end

% : £;.end £,.player® 2Py !

1 0.5 : £5.player&?t;.end
Tear = host® 4 3 : £5.end Thost = car&

1.4 end £y.player®{s.player&t,.end

3 * f3.end,

3.player®¢,y.player&ts.end,

£y.host®¢;.end
£3.host®¢;.end,

£,.host®e3.end

T = host&
change {[3.host®f2.end.

Tstay = host& {

The player is on a game show with a choice of three doors, with one hiding a car. They initially
pick door 1. The host then opens another door without the car and informs the player, who must
then decide whether to stick with door 1 or switch to the remaining unopened door. Is switching

advantageous? Intuitively, it might seem not.

In Ag,y, the player keeps door 1; in Acpapge, they switch. Both contexts terminate iff the correct
door is chosen. Running PROSE on the both gives:

$ prose verify examples/monty-hall-stay.ctx
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Table 5.1: Benchmark results for PROSE.
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Typing context Translation (ms) Safety (s) PDF (s) PTerm (s) End-to-end (s)
auth 0.237 £ 0.002 0.338 £ 0.004 0.331+£0.001 0.328 £+ 0.001 0.339 + 0.002
dice 0.293 £+ 0.008 0.386 + 0.001 0.414 +0.001  0.387 £+ 0.002 0.448 + 0.001
different-sort 0.104 £+ 0.008 0.330 +£ 0.001  0.328 +£0.001  0.327 £+ 0.001 0.330 £ 0.002
monty-hall-change 0.163 + 0.008 0.327 £ 0.001  0.327 £ 0.001 0.333 £+ 0.001 0.337 £ 0.001
monty-hall-stay 0.163 £+ 0.008 0.330 £ 0.001 0.334 +0.002 0.329 + 0.001 0.341 £+ 0.002
more-choices 0.107 &+ 0.008 0.328 £ 0.001 0.328 £0.001  0.328 £+ 0.001 0.332 £+ 0.002
multiparty-workers 0.219 £+ 0.008 0.394 +£ 0.006 0.434 £ 0.002 0.375 £+ 0.001 0.515 £+ 0.003
non-terminating 0.118 &+ 0.009 0.331 +£0.002 0.332 +0.001 0.329 £+ 0.001 0.333 + 0.001
open 0.121 £+ 0.008 0.329 £ 0.001 0.328 £ 0.001  0.338 &+ 0.002 0.335 + 0.001
prob-deadlock 0.123 £+ 0.009 0.334 +£0.001  0.341 +0.003 0.329 + 0.001 0.338 +£ 0.001
rec-map-reduce 0.172 £ 0.008 0.3354+0.001 0.331£0.001 0.334 £ 0.001 0.345 £ 0.001
rec-two-buyers 0.146 £+ 0.008 0.327 £ 0.001  0.341 £ 0.003  0.339 £+ 0.002 0.336 + 0.001
same-labels 0.140 £+ 0.008 0.331 +£0.001 0.337 £0.001 0.344 £+ 0.001 0.337 &+ 0.002
simple 0.108 £+ 0.008 0.331 +£0.001 0.333 +£0.001 0.332 £+ 0.001 0.333 £+ 0.001
sync-alone 0.132 £+ 0.008 0.337 £0.001 0.339 +0.001 0.339 + 0.002 0.334 + 0.001
translation-example 0.126 & 0.008 0.332£0.001 0.333+£0.001 0.332+£0.002  0.336 + 0.001
unsafe 0.130 &+ 0.008 0.333 £ 0.001 0.328 £ 0.002 0.333 £+ 0.002 0.337 £ 0.001
unsafe-2 0.123 + 0.008 0.332 +£ 0.002 0.334 +0.001 0.332 £+ 0.001 0.340 £+ 0.001

Probabilistic termination

Result: 0.333333 (exact floating point)

$ prose verify examples/monty-hall-change.ctx

Probabilistic termination

Result: 0.666667 (exact floating point)

So in fact switching doubles the player’s chance of winning the car!

5.2 Performance

We now evaluate the efficiency of Prose through benchmarks. The experiments were run on a
laptop with an Apple M1 Pro processor and 32GB of RAM, with OCaml 5.1.1 and PRISM v4.8.1.
We run each measurement 30 times and report their mean and standard error. For each context,
we record the translation time, time for invoking PRISM on each property separately, and the

overall end-to-end runtime.

The results are presented in Table 5.1, and all context files are provided in Appendix A. We find
that all contexts are verified in well under a second, demonstrating that PROSE is suitable for

practical use. Notably, translation cost is negligible (<0.3ms), making PRISM model checking the
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dominating cost.

Interestingly, end-to-end runtimes are similar to those for checking individual properties, as
PRISM internal model construction introduces a significant cost. Since the model is built once
per PRISM invocation, this cost is reflected in all single-property runtimes but only once in the

end-to-end runtime.



Chapter 6

Conclusion

In this project, we have introduced a new method for verifying probabilistic distributed proto-
cols. We extended bottom-up multiparty session types with probabilities (Chapter 2), developed
an encoding into PRISM (Chapter 3), and proved its correctness. We then implemented the ver-
ification procedure in Prose (Chapter 4) and demonstrated its practicality through case studies

and performance benchmarks (Chapter 5).

This project lays the groundwork for many extensions. We are currently extending our type
system to support sub-probabilities, where internal choices have probabilities summing to less
than one. These types represent underspecified protocols, enabling the verification of processes
with incomplete behaviour. Experimental support for this extension is already implemented in
Prose. We also plan to extend Prosk to verify additional properties such as probabilistic liveness,
and use PROSE to verify larger-scale protocols such as those used in the distributed training of

machine learning models.
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Appendix A

Typing context examples

auth.ctx

(* Note: this context uses sub-probabilities as discussed briefly in the conclusion %)

s : b & {
connect . ¢ (+) {
0.1 : login . a & authorise . end,
0.3 : cancel . e (+) terminate . end
},
networkerror . mu t . b & retry . t
¥
c : s & {
login . a (+) pass . end,
cancel . a (+) quit . end
3
a : c &{
pass . a (+) authorise . end,
quit . end
3
b : s (+) {
0.6 : connect . end,
0.4 : networkerror . mu t . s (+) retry . t
¥
dice.ctx

(* Knuth & Yao's Dice Program. Refer to
https://www.prismmodelchecker.org/casestudies/dice.php

We represent each vertex i with two processes (pi, qi), which allows us to
simulate internal choice sending to different participants.

*)

po : g0 (+) {
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qd : po & {
11

12

pl : mu t
qo & go
ql (+) {
0.5
0.5

ql : mu t.
p1 & {
13

14

p2 : mu t.
qd & go
g2 (+) {
0.5
0.5

q2 : mu t .
p2 & {
15

16

p3 : mu t
ql & go
a3 (+) {
0.5
0.5

q3 : mu t .
p3 & {
11

d1

p4 : gl & go
a4 (+) {

0.5

0.5

q4 : p4 & {
d2
d3

TYPING CONTEXT EXAMPLES
11 . end,

12 . end

mu t

pl (+) go . g3 & redo . t,
mu t .
p2 (+) go . g6 & redo . t

13 . t,
14 . t

p3 (+) go . t,

p4 (+) go
15 . t,
16 . t

p5 (+) go . t,

p6 (+) go
11 . t,
dl . end

g0 (+) redo . t,
dicel (+) done . end

d2 . end,
d3 . end
dice2 (+) done . end,

dice3 (+) done . end
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p5

q5

p6

q6

(* Ea

dicel
dice2
dice3
dice4
dice5
dice6

dummy

different-sort.ctx

(* What happens

q2
q5

p5

mu
q2
q6

mu
p6

ch

& go

) {

0.5
0.5

& {
d4
ds

& go

|

0.5
0.5

t .
& {
dé
12

of

q3
q4
q4
q5
q5
q6

mu

d4
d5

dice4
dice5b

dé
12

end,
end

(+) done
(+) done

end,
end

dice6 (+) done

gqd (+) redo

t

end,
end

end,

these should be of 1/6 probability *)

Q0 Q0 Q0 Q0 QRO Qo

done mu
done end
done end
done end
done end
done end
dicel & repeat

dummy (+) repeat . t

t

if two participants try to communicate on the same label but

different sorts (basic types)? x)

p :q (+) 1(Int)

g : p & 1(Bool)

end

end

monty-hall-change.ctx

(* Monty Hall problem.

to either 2 or 3,

In this variant, the contestant always switches doors
depending on whichever door the host opens.

The probability of deadlock freedom corresponds with the probability of
picking the door with the car.

Compare with [monty-hall-stay.ctx]. %)

car

host (+) {
0.333333
0.333333
0.333334

11
12
13

end,
end,
end

56



APPENDIX A. TYPING CONTEXT EXAMPLES

host car & {
11 . player (+) {
0.5 : 12 player & 11 end,
0.5 : 13 player & 11 . end
1,
12 . player (+) 13 player & 12
13 . player (+) 12 player & 13
player host & {
12 . host (+) 13 end,
13 . host (+) 12 . end
}

monty-hall-stay.ctx

(* Monty Hall problem.

In this variant, t

end,
end

he contestant always picks Door 1.

The probability of deadlock freedom corresponds with the probability of

picking the door with the car.

Compare with [monty-hall-change.ctx].
car : host (+) {
0.333333 11 . end,
0.333333 12 . end,
0.333334 13 . end
}
host car & {
11 . player (+) {
0.5 : 12 player & 11 end,
0.5 : 13 player & 11 . end
1,
12 . player (+) 13 player & 12
13 . player (+) 12 player & 13
player host & {
12 . host (+) 11 end,
13 . host (+) 11 . end
}

more-choices.ctx

p :q (+) 11 . end

g : mu t p & {
11 . end,
12 .t
}

multiparty-workers.ctx

starter workerAl (+) datum(Int)

*)

end,
end
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workerA2 (+) datum(Int)
workerA3 (+) datum(Int)
end

workerA1l : starter & datum(Int)
mu t
workerB1 (+) {

0.5 : datum(Int) . workerCl & result(Int)

0.5 : stop . end

workerB1 : mu t
workerAl & {

datum(Int) . workerC1l (+) datum(Int)

stop . workerCl (+) stop . end

workerCl : mu t
workerB1 & {

datum(Int) . workerAl (+) result

stop . end

workerA2 : starter & datum(Int)
mu t
workerB2 (+) {

0.5 : datum(Int) . workerC2 & result(Int)

0.5 : stop . end

workerB2 : mu t
workerA2 & {

datum(Int) . workerC2 (+) datum(Int)

stop . workerC2 (+) stop . end

workerC2 : mu t
workerB2 & {

datum(Int) . workerA2 (+) result

stop . end

workerA3 : starter & datum(Int)
mu t
workerB3 (+) {

0.5 : datum(Int) . workerC3 & result(Int)

0.5 : stop . end

workerB3 : mu t
workerA3 & {

datum(Int) . workerC3 (+) datum(Int)

stop . workerC3 (+) stop . end

workerC3 : mu t
workerB3 & {

datum(Int) . workerA3 (+) result

stop . end
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non-terminating.ctx

a: b (+){
0.5 : 11 end,
0.5 : 12 mut . b (+) 12 . t
3
b : mut .
a & {
11 . end,
12 .t
3
open.ctx
alice bob (+) { ©0.33 a.end, 0.33
bob : alice & { a.end, b.end, c.end }

prob-deadlock.ctx

commander : a (+) {
0.7 : deadlock . end,
0.3 : nodeadlock . end

}
a : commander & {
deadlock . b & msg . end,
nodeadlock . b (+) msg . end

b : a & msg . end

rec-map-reduce.ctx
mapper : mu t .
worker1l (+) datum(Int)
worker2 (+) datum(Int)
worker3 (+) datum(Int)
reducer & {
continue(Int) . t,
stop .
worker1l (+) stop .
worker2 (+) stop .
worker3 (+) stop .
end
}
worker1 mapper & datum(Int)
mu t .
reducer (+)
mapper & {
datum(Int) . t,

result (Int)

o

carol(+) c .

end,

Q.

34

c .

end }
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stop . end
}
worker2 : mapper & datum(Int)
mu t
reducer (+) result(Int)
mapper & {
datum(Int) . t,
stop . end
}
worker3 : mapper & datum(Int)
mu t
reducer (+) result(Int)
mapper & {

datum(Int) . t,
stop . end

reducer : mu t
worker1l & result(Int)
worker2 & result(Int)
worker3 & result(Int)
mapper (+) {
0.4 : continue(Int) . t,
0.6 : stop.end

rec-two-buyers.ctx

alice: shop(+)query(Str)
shop&price(Int)

mu t
bob (+) {
0.5 : split(Int) . bob & {yes . shop (+) buy . end, no . t},
0.5 : cancel . shop (+) no . end
}

shop: alice&query(Str) . alice(+)price(Int) . alice&{buy.end, no.end}

bob: mu t
alice & {
split(Int) . alice (+) {0.5 : yes.end, 0.5 : no.t},
cancel . end
}

same-labels.ctx

(* Previous iterations of the translation used ID(-) to work out the next state.
This causes a problem in the following case.

Suppose p::q::11 is assigned ID 2 and p::q::12 is assigned ID 1, and the state
after q (+) 12 to be n. Then, the second q (+) 11 will first do an initial
translation to n + 1, then skip by two to n + 3. This will exceed the state
space of p.

This test checks for this case.

*)
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0.5 : 11 . end,
0.5 : 12 . g (+) 11 . end

3
a:pé&{
11 . end,
12 . p & 11 . end
}

(* Try the symmetric case for if the ID ordering changes x)

p1 : al (+) {
0.5 : 11 . g1 (+) 12 . end,
0.5 : 12 . end

3
ql : pl1 & {
11 . p1 & 12 . end,
12 . end
3

(* Shuffle the ordering of the two branches %)
q2 : p2 & {

11 . end,
12 . p2 & 11 . end

p2 : g2 (+) {
0.5 : 12 . g2 (+) 11 . end,
0.5 : 11 . end

simple.ctx
alice : bob (+) { 0.33 : a.end, 0.67 : b(Int).end }

bob : alice & { a.end, b(Int).end }

sync-alone.ctx
(* What happens if we send to a recipient who does not ever expect to receive? x)

alice : bob (+)

12 end
}
bob : charlie & {
11 . end,
12 . end

charlie : bob (+) {
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0.5 : 11 . end,
0.5 : 12 . end

(* What about the other way? x)

a : b & {
11 . end,
12 . end
}
b : c (+) {
0.7 : 11 . end,
0.3 12 . end
¥
c : b &{
11 . end,
12 . end
3

translation-example.ctx

(* Translation example from the thesis *)

p g () {
0.2 117 . mu t . g (+) 11 . t,
0.3 12 . g (+) 12 . end,
0.5 13 . end

¥

a:pé&{
117 . mu t. p & 11 . t,
12 . p & 12 . end,
13 . end

¥

unsafe.ctx

alice : bob (+) {
0.6 : 11 . end,
0.3 : 12 .
bob (+) {
0.9 : 13 . end,
0.1 : 14 . end

3,
0.1 : 15 . end
}
bob : alice & {
117 . end,
12 . alice & 13 . end

unsafe-2.ctx
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(* Two pairs being unsafe in parallel =x*)

a: b (+) ¢
0.4 : 11 . end,
0.6 : 12 . end

¥
b a & {
12 . end,
13 . end
3
c :d (+) {
0.3 : 11 . end,
0.7 : 12 . end
}
d c & {
12 . end,
13 . end
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